
Introduction to Statistical Ideas and Methods

Summarizing Data: Relationships Between Variables
Examining Relationships Between Two Categorical Variables

Recall that the distribution of a variable is the pattern of values in the data for that
variable, showing the frequency of the occurrence of the values relative to each other. For
categorical variables, the distribution is given by the frequencies or relative frequencies
of the observations for each of the categories of the variable.

Example 1
In an earlier section for the anthropology data of measurements on 400 skeletons, we saw
the distribution of mass, or BMI classification and sex, shown below in Figure 1.

(a) BMI classification (b) Sex

Figure 1: Distributions of categorical variables for skeleton data

Now we are interested in looking at these two categorical variables together. Our anthropol-
ogist is interested in learning about how the error in age estimation is associated with body
mass index. But it is important to also consider the effect of sex here. If the error in age
estimation also differs with sex, it will be important to understand if the body mass index
classification differs with sex for these observations.

Figure 2: Possible relationships between the categorical variables in the skeleton data
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By investigating the joint distribution of body mass index classification and sex, we can learn
things such as:

• Do we have equal numbers of females and males who are obese?

• Are there equal numbers of males and females in the underweight category?

The joint distribution of two categorical variables can be seen in a contingency table,
sometimes called a cross tabulation, or a two way table. In the contingency table we
classify our 400 skeletons two ways, by BMI classification and by sex. The table contains the
counts (Figure 3(a)) or percentages (Figure 3(b)) of the number of observed values for males
for each of the BMI classifications, and for females for each of the BMI classifications.

(a) Contingency table displaying fre-
quencies

(b) Contingency table displaying rel-
ative frequencies

Figure 3: Joint distribution of BMI classification and sex for skeleton data

We can see from the tables that 46 or approximately 12% of the 400 skeletons are underweight
males and 28, or about 7%, are underweight females.

For a graphical display of the joint distribution we can plot the frequencies in either side-
by-side or stacked bar plots. Figure 4 has the height of each bar as the number of skeletons
in each body mass classification for each sex.
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(a) Side-by-side boxplots
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(b) Stacked bar plots

Figure 4: Joint distribution of BMI classification and sex for skeleton data

2



From the side-by-side plot it is clear that there are many more male skeletons with a normal
BMI than skeletons in any other category. For female skeletons, we can also see that normal
BMI is also the most common of the classifications. However, by looking at the total counts
of the bars for males in the stacked bar plot, it is clear that there are more than twice as
many males as females. And although the normal BMI bar is taller for males than it is for
females, it is difficult to judge from these plots if a greater fraction or proportion of the males
tend to have normal BMI than those of females. We need to do some more work to make a
fair comparison.

The marginal distribution of a categorical variable is the distribution of only one of the
variables in a contingency table. We can see it in the margins of the table by taking the row
or column totals. In Figure 5 below, we see the marginal distributions of BMI and sex.

Figure 5: Marginal distributions of BMI classification and sex

The conditional distribution of a categorical variable is its distribution within a fixed
value of a second variable. The conditional distribution of BMI classification given sex,
shown in Figure 6 below, will help us understand whether the BMI classification is the same
for both sexes.
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Figure 6: Conditional distributions of BMI classification given sex

Given that the skeleton is male, the conditional distribution is the distribution of BMI
classification just for males, and similarly for females. The relevant quantity that we need
for the conditional distribution, and we can calculate it from the contingency table of counts
in Figure 5, is the column percentage.

For example, 16.4% of male skeletons are underweight

16.4% =
46

281

and 23.5% of female skeletons are underweight

23.5% =
28

119
.

Note that for both males and females, the conditional distribution proportions sums to
1.

Graphically, we can compare the conditional distributions of BMI classification given sex,
by plotting the column percentages in stacked bar plots like in Figure 7 below.
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Figure 7: Stacked bar plots of the conditional distributions of BMI classification given sex.
This type of bar plot is often called a segmented bar plot.

From these plots, we can see that the proportions of underweight and obese skeletons are
higher in females than males. Also, the proportion of normal weight skeletons is higher for
males than females.

Two variables in a contingency table are independent if the conditional distribution of one
variable is the same for all values of the other variable. As we have noted, the distributions of
BMI classifications seem to differ between males and females; it seems that BMI classification
and sex are not independent for these skeletons.

Example 2
Let’s look at one more example from a report on the findings from a 20 year follow-up of a
large scale study of thyroid and heart disease carried on in England in the mid 1970s. We
are working with a subset of the data containing measurements on 1,314 women who were
classified at the beginning of the study as current smokers or having never smoked. We are
interested in the 20 year survival status for these women.
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(a) Joint distribution of survival
status and smoking status

(b) Conditional distribution of
survival status given smoking sta-
tus

Figure 8: Tables for thyroid and heart disease 20 year study

Looking at the contingency table for these data, the column proportions in Figure 8 tell an
interesting story. Of the smokers, only 24% had died but of the non-smokers 31% had died.
Does this study show that smoking might lead to a greater chance of surviving 20 years? Of
course there’s a twist here!

Let’s look at the column proportions for the tables of smoking and survival status broken
down by age grouping. Although age is a quantitative variable, it is sometimes given in
groups to illustrate a point. As we can see from the side-by-side bar chart in Figure 9, for
all age groups except the 25 to 34 year olds, the death rate is higher in the group of smokers
than in the group of non-smokers. How did this happen?
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Figure 9: Side-by-side bar charts of mortality rate by smoking status, for each age group
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Figure 10: Stacked bar charts of age group by smoking status

Age is related to both smoking status and survival. The stacked bar chart in Figure ?? shows
the distributions for smokers and non-smokers. The non-smoking population includes more
older women; when the study started, few of the women over age 65 were smokers. But, of
course many of them, since they were at least 65 at the start, had passed away by the end
of the 20 year follow-up period. Moreover, this study could potentially underestimate the
harmful effects of smoking, since the observed small percentage of older smokers could have
happened because smokers tend not to survive to age 65.

This is an example of Simpson’s Paradox, in which conditional distributions within sub-
groups can differ from conditional distributions for combined observations. Age here is a
lurking variable. We need to always watch for lurking variables which, if taken into account
in our analyses, might affect our conclusions. In some upcoming lectures, we will talk about
data collection and how to design a study to mitigate the effects of lurking variables.
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