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Problem Setting

Our task is to find to separate two sets of points from two classes blue and
red with maximum margin between the points and the separating line
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Problem Setting

Affine boundaries are often not enough to separate our points

But a clever transformation can make our data linearly separable

φ ∶ (a, b)↦ φ(a, b) = (a, b, a2 + b
2)
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Hyperplane Separation

Let us encode our data by f ( ) = 1 and f ( ) = −1. We want to find the
hyperplane H ∶ ⟨w, x⟩ + b = 0 that separates the two classes while
maintaining a maximum margin m. (Recall that in a Euclidean space,

⟨x, y⟩ = x
⊤
y is a canonical example of an inner product)

⟹ maxm, s.t. f (xi)(⟨w, xi⟩ + b) ≥ m.

Maximizing the margin m equates to solving the constrained optimization
problem

max
w,b

2/∥w∥2
2

s.t. yi (⟨w, xi⟩ + b) ≥ 1.

Maximizing the objective function is equivalent to minimizing its
reciprocal, so we may express the Lagrangian of this problem as

L (w, b,α) = 1

2
⟨w,w⟩ −

n

∑
i=1

αi (1 − f (xi)(⟨w, xi⟩ + b)).
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Hyperplane Separation

When the points cannot be completely separated, we may modify the
problem by introducing the slack variables ζi , giving us the soft margin
formulation, where for yi = f (xi) we have

Constraints f (xi)(⟨w, xi⟩ + b) ≥ 1 − ζi ; for ζi ≥ 0.

min
w,b

1

2
∥w∥2

2 + µ∑
i

ζi

s.t. yi(⟨w, xi⟩ + b) ≥ 1 − ζi

Where the hyperparameter µ encodes how much we penalize examples
that are incorrectly classified, and the Lagrangian would have this extra
term as well.

1

1
For more details see the supplemental material, or Chapter 12.2.1 in ESL.
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Kernel SVM

Now the dual formulation for the previous Lagrangian problem is given by

max
α

n

∑
i=1

αi −
1

4

n

∑
i=1

n

∑
j=1

αiαjyiyj ⟨xi, xj⟩

s.t.
n

∑
i=1

αiyi = 0, 0 ≤ αi ≤ C , i = 1, . . . , n.

Where the maximization is over α, and depends on the constant products
⟨xi, xj⟩. For non-affine boundaries, we looked to express xi in a different
coordinate system for which our data was linearly separable, namely we
considered the mapping φ, yielding a non-linear boundary (in xi ).

This modified the objective function to become

max
α

n

∑
i=1

αi −
1

4

n

∑
i=1

n

∑
j=1

αiαjyiyj ⟨φ(xi), φ(xj)⟩.
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Kernel Trick

But what is φ, and how expensive is it to calculate it?

As it turns out, we don’t need to calculate φ explicitly!

X φ(X ) K

n

∑
i=1

αi −
1

4

n

∑
i=1

n

∑
j=1

αiαjyiyj⟨φ(xi), φ(xj)⟩

n

∑
i=1

αi −
1

4

n

∑
i=1

n

∑
j=1

αiαjyiyjk(xi , xj)

k(x, x′) = ⟨φ(x), φ(x′)⟩
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Kernel Function

We only need to find a function k ∶ X × X → R which behaves as the
inner product in the (typically unknown) feature space H = Im(φ) and
thus must inherit the properties of an inner product

Symmetric: k(x, x′) = k(x′, x),
Positive definite: ∑n

i=1∑n
j=1 αiαjk(x, x′) ≥ 0.

Teaching team of STA314 (UofT) STA314-Tut08 Monday November 25th, 2024 9 / 15



Circle Example

For the circle example we had before we used the transformation

φ ∶ (a, b)↦ φ(a, b) = (a, b, a2 + b
2)

but we could just compute its corresponding kernel directly as

⟨φ(x), φ(x′)⟩ = ⟨(x1, x2, x21 + x
2
2 ), (x ′1, x ′2, x ′1

2
+ x

′
2
2)⟩

= x1x
′
1 + x2x

′
2 + (x21 + x

2
2 )(x ′1

2
+ x

′
2
2)

So the corresponding kernel is given by

k(x, x′) = ∥x∥2∥x ′∥2
+ ⟨x , x ′⟩

Note how we can calculate k(x, x′) directly, without needing to compute
φ(x) or φ(x′).
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Example: Linear Regression

Kernels can also be useful for regression problems.

Recall that the problem of predicting y as a linear function of x, from
some samples {(xi , yi)} may be written as

ŷ = x
⊤
β̂ =

n

∑
i=1

αi ⟨x, xi⟩

Where β̂ = (X⊤X )−1X⊤y . Note that, assuming n = p and the data
matrix X is full rank (otherwise we would need the pseudo-inverse), we
have

(X⊤X )X⊤ = X
⊤(XX⊤)

(X⊤X )−1(X⊤X )X⊤(XX⊤)−1 = (X⊤X )−1X⊤(XX⊤)(XX⊤)−1

(X⊤X )−1X⊤ = X
⊤(XX⊤)−1,

so we have ⟹ x
⊤
β̂ = x

⊤
X
⊤(XX⊤)−1y =∶ x⊤X⊤α.
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Example: Linear Regression II

With the previous identity, we may express our linear regression as

ŷ = x
⊤
β̂ =

n

∑
i=1

αi ⟨x, xi⟩,

where α = (XX⊤)−1y .

So we can implicitly map our variables into a different space, changing
their coordinates, by using a kernel function:

ŷ = β̂
⊤
x =

n

∑
i=1

αik(x, xi),

replacing the inner product. Now our data is not constrained to lie on an
affine subspace.
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More Kernel Examples

Consider a dataset {xi}ni=1 ⊂ Rm
, and assume the data can be separated

by a polynomial. The polynomial kernel is given by

k(x, x′) = (⟨x, x′⟩ + c)d

Which requires m + 2 operations to compute. If we were to compute the
transformation φ such that k(x, x′) = ⟨φ(x), φ(x′)⟩ for d = 2 we would
have to calculate:

φ(x) = (x21 , . . . , x2m,
√

2x1x2,
√

2x1x3, . . . ,√
2xm−1xm,

√
2cx1, . . . ,

√
2cxm, c)

Which is a space of dimension 2m + (m
2
) + 1. The number of operations

required would be 4m + 2(m
2
) just for the outputs of φ, plus those of

computing the inner product.
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More Kernel Examples

Again for a dataset {xi}ni=1 ⊂ Rm
, and consider the cosine kernel, given by:

k(x, x′) =
⟨x, x′⟩

∥x∥∥x′∥ .

Which requires O(m) operations to calculate.

The corresponding feature map would be

φ(x) = x

∥x∥ ,

which would have an identical computational cost of O(m).

For this example, the cost is exactly the same, given the simplicity of the
feature map, which makes the data scale invariant. This example is
special, as the kernel trick usually makes computations a lot more efficient.
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Example: RBF

The Radial Basis Function kernel has an expression

k(x, x′) = exp(−∥x − x
′∥2

2σ2
) .

This kernel may be expanded by Taylor expansion as

exp(−∥x∥2

2σ2
) exp(−∥x′∥2

2σ2
)
⎛
⎜⎜
⎝

1 −
⟨x, x′⟩
σ2

+
⟨x, x′⟩2

2!σ2
−

⟨x, x′⟩3

3!σ2
+ . . .

⎞
⎟⎟
⎠

for which the corresponding feature map (taking x ∈ R1
for simplicity) is

φ(x) = e
−x2/2σ2 ⎛

⎜
⎝

1,

√
1

1!σ2
x,

√
1

2!σ4
x
2
,

√
1

3!σ6
x
3
, . . .

⎞
⎟
⎠

What would be the output space of φ here? What is its dimension?
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