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Linear Discriminant Analysis – Review

Suppose we have K classes, C = {0, 1, 2, . . . ,K − 1}. For any k ∈ C ,
recall:

we write
πk ∶= P(Y = k)

as the prior probability that a randomly chosen observation comes
from the k-th class.

Define
fk(x) ∶= P(X = x ∣ Y = k)

as the conditional density function of X = x ∈ R from class k .

In discriminant analysis, a parametric assumption is made on fk(x).
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Linear Discriminant Analysis – Review

According to the Bayes classifier, we should classify a new point
X = x according to

arg max
k∈C

pk(x) ∶= arg max
k∈C

πk fk(x)
∑`∈C π`f`(x)

= arg max
k∈C

πk fk(x).

Assume that

X ∣ Y = k ∼ N (µk , σ2k), ∀k ∈ C ,

namely,

fk(x) =
1√

2πσ2k

exp(−(x − µk)2

2σ2k
) .

Linear Discriminant Analysis (LDA) further assumes

σ
2
0 = σ

2
1 = ⋅ ⋅ ⋅ = σ

2
K−1 = σ

2
.
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Linear Discriminant Analysis – Continued

As a result, the Bayes rule classifies X = x as

arg max
k∈C

pk(x) = arg max
k∈C

log(pk(x))

= arg max
k∈C

log ( πk fk(x)
∑`∈C π`f`(x)

)

= arg max
k∈C

log(πk fk(x))

= arg max
k∈C

log (πk
1√

2πσ2
exp(−(x − µk)2

2σ2
))

= arg max
k∈C

(log(πk) −
1

2
log(2πσ

2) − (x2 + µ2k − 2xµk)
2σ2

)

with the goal of maximizing with respect to k

= arg max
k∈C

(µk
σ2

x −
µ
2
k

2σ2
+ log(πk))
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Linear Discriminant Analysis - MLE

If we know µ0, . . . , µK−1, σ
2
, and π0, . . . , πK−1, then we can construct the

Bayes rule. However, we typically dont know these parameters and need to
estimate them from the training data!

Question:

Given training data (x1, y1), . . . , (xn, yn) for all k ∈ C , we have three
parameters to estimate: πk , µk , and σ

2
. How can you find them

using maximum likelihood estimation (MLE)?
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Linear Discriminant Analysis - MLE

Let’s start with the likelihood function. Given pairs of data (xi , yi) for i = 1, . . . , n,
we have:

L(µ0, . . . , µK−1, π0, . . . , πK−1, σ) =
n

∏
i=1

L(Yi = yi ,Xi = xi).

This gives us the log-likelihood function:

` ∶= log L(µ0, . . . , µK−1, π0, . . . , πK−1, σ)

=

n

∑
i=1

log(L(Yi = yi ,Xi = xi))

=

K−1

∑
k=0

∑
1≤i≤n,yi=k

log(L(Yi = k ,Xi = xi))

=

K−1

∑
k=0

∑
1≤i≤n,yi=k

log(L(Xi = xi ∣ Yi = k)L(Yi = k))

=

K−1

∑
k=0

∑
1≤i≤n,yi=k

(log(πk) −
1

2
log(2πσ

2) − (xi − µk)2

2σ2
) .
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MLE for πk

Notice that you cannot take direct derivatives with respect to πk
because they are constrained by ∑K

k=0 πk = 1.

If K = 1, the response variable is binary. Then, with π1 = 1− π0, the
analysis follows the Bernoulli distribution MLE covered in Tutorial 6.

If K ≥ 2, we need to use Lagrange multipliers on a Multinomial
distribution to find the solution. For more information, you can read
here.
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https://en.wikipedia.org/wiki/Lagrange_multiplier
https://blog.jakuba.net/maximum-likelihood-for-multinomial-distribution/


Linear Discriminant Analysis - MLE for µk , σ
2

Now, for µk and σ
2
, we can take the partial derivatives as follows:

∂`

∂µk
=

∂

∂µk

K−1

∑
k=0

∑
1≤i≤n,yi=k

(log(πk) −
1

2
log(2πσ

2) − (xi − µk)2

2σ2
)

= ∑
1≤i≤n,yi=k

(xi − µk)
σ2

.

which gives us the Maximum Likelihood Estimator for µk :

µ̂k =
1
nk

∑
1≤i≤n,yi=k

xi .
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Linear Discriminant Analysis - MLE for µk , σ
2

Now for σ
2
, we take the partial derivatives:

∂`

∂σ2
=

∂

∂σ2

K−1

∑
k=0

∑
1≤i≤n,yi=k

(log(πk) −
1

2
log(2πσ

2) − (xi − µk)2

2σ2
)

=

K−1

∑
k=0

∑
1≤i≤n,yi=k

(− 1

2σ2
+

(xi − µk)2

2σ4
) .

Setting this derivative to zero and solving, we obtain the maximum
likelihood estimator for σ

2
:

σ̂
2
=

1
n

K−1

∑
k=0

∑
1≤i≤n,yi=k

(xi − µ̂k)2.
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Review of Multinomial Logit Model (Optional)

Recall the question on Multinomial Logit Model during Midterm 2:

Problem 4 Midterm 2

The Multinomial Logit Model (MLM) is a popular model for multi-
class classification problems. Imagine a study where individuals are
asked to choose their preferred product among a list of K + 1 items.
For each product, we have a measurement of its attributes. Here, we
consider only one attribute, such as price. The prices of each product
are x0, x1, . . . , xK . The MLM assumes that the customer makes their
choice Y according to:

log
P(Y = k)
P(Y = 0) = β

∗
0 + β

∗
1 xk , k ∈ {1, . . . ,K}

Product 0 is chosen as the baseline. We write Y = k if the customer
chooses product k. The unknown coefficients β

∗
0 and β

∗
1 represent

the customer’s ”taste” for price. Suppose we observe n i.i.d. choices
y1, . . . , yn of a chosen customer according to the above model.
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Probability Mass Function for Each Class k (Optional)

We start by calculating the probability mass function for each class 0, . . . ,K :
By definition, for all 1 ≤ k ≤ K ,

P(Y = k) = e
β
∗
0+β

∗
1 xkP(Y = 0) (1)

Since:

1 =
K

∑
k=1

P(Y = k) + P(Y = 0) = P(Y = 0) (
K

∑
k=1

e
β
∗
0+β

∗
1 xk + 1) ,

we have:

P(Y = 0) = 1

∑K
k=1 e

β∗0+β
∗
1 xk + 1

.

Plugging in equation (1), we obtain:

P(Y = k) = e
β
∗
0+β

∗
1 xk

∑K
j=1 e

β∗0+β
∗
1 xj + 1

.
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Log-likelihood Function at any β0, β1 (Optional)

Let nk = ∑n
i=1 1{yi = k}, for all k ∈ {0, 1, . . . ,K}.

The likelihood of y1 is:

L(β0, β1; y1) =
K

∏
k=0

P(y1 = k)1{y1=k}

so that the log-likelihood of y1, . . . , yn at any β0, β1 is:

`(β0, β1) =
n

∑
i=1

K

∑
k=0

1{yi = k} log [P(yi = k)]

=

n

∑
i=1

1{yi = 0} (− log (1 +
K

∑
k=1

exp(β0 + β1xk)))

+
n

∑
i=1

K

∑
k=1

1{yi = k} (β0 + β1xk − log (1 +
K

∑
k=1

exp(β0 + β1xk)))

=

K

∑
k=1

nk(β0 + β1xk) − n log (1 +
K

∑
k=1

exp(β0 + β1xk)) (2)
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Gradient Descent for β1 (Optional)

Suppose we know β
∗
0 = 0 and we only maximize the log-likelihood function

`(β1) ∶= `(β0 = 0, β1) in equation (2) over β1 ∈ R to compute the MLE
of β

∗
1 .

Question:

Write

p0(β0, β1) =
1

1 +∑K
k=1 e

β0+β1xk

and

pk(β0, β1) =
e
β0+β1xk

1 +∑K
k=1 e

β0+β1xk
, k ∈ {1, . . . ,K}.

Starting from a given initialization β̂1
(0)

with a given step size (learn-
ing rate) α, state the gradient descent iterates for computing
the MLE of β

∗
1 . (You need to derive the expression of the gradient).
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Gradient Descent – Continued (Optional)

Since

∂`(β0, β1)
∂β1

=

K

∑
k=1

nkxk − n
∑K

k=1 e
β0+β1xkxk

1 +∑K
k=1 e

β0+β1xk
=

K

∑
k=1

[nk − npk(β0, β1)] xk ,

the Gradient Descent Update for β̂1
(t)

follows as

β̂1
(t+1)

= β̂1
(t)
− α

K

∑
k=1

[nk − npk(0, β̂1
(t))] xk .

Specifically,

pk(0, β̂1
(t)) = e

β̂1
(t)

xk

1 +∑K
k=1 e

β̂1
(t)

xk

.
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Convexity of the log-likelihood function when K = 1
(Optional)

Convexity: Recall that a function f ∶ R → R is said to be convex if
f (λx + (1−λ)y) ≤ λf (x)+ (1−λ)f (y) for all x , y ∈ R and all λ ∈ [0, 1].
A sufficient condition for f (x) to be convex is f

′′(x) ≥ 0 for all x .

Question:

Suppose K = 1. Prove that the negative log-likelihood, −`(β1), in
the previous subquestion is a convex function of β1. Reason whether
or not the MLE of β1 can be computed via the gradient descent you
derived above with a suitable step size.
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Convexity – Continued (Optional)

From the previous part,

−
∂
2
`(β0, β1)
∂β21

= n

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑K
k=1 x

2
k e

β0+β1xk

1 +∑K
k=1 e

β0+β1xk
− (

∑K
k=1 xke

β0+β1xk

1 +∑K
k=1 e

β0+β1xk
)
2⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

For K = 1 and β0 = 0, this simplifies to

n

(1 + eβ1x1)2
(x21 eβ1x1(1 + e

β1x1) − (x1eβ1x1)2) = n
x
2
1 e

β1x1

(1 + eβ1x1)2
≥ 0.

Therefore, we know that
∂
2
`(β0, β1)
∂β21

≥ 0

for all β0 and β1, hence `(β1) is convex.
As a result of the convexity of `(β1), and since the minimization is over
β1 ∈ R, which is a convex space, gradient descent with a suitable step size
guarantees finding the MLE.
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Convexity of the log-likelihood function when K ≥ 2
(Optional)

Bonus Question:

Can you extend the result of the previous subquestion to K ≥ 2?

Hint: For any two sequences {a1, . . . , an} and {b1, . . . , bn}, the
CauchySchwarz inequality states that

(
n

∑
i=1

aibi)
2

≤ (
n

∑
i=1

a
2
i )(

n

∑
i=1

b
2
i ) .
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Convexity for K ≥ 2 – Continued (Optional)

For general K ≥ 2, we have the claim by noting that

∑K
k=1 x

2
k e

β0+β1xk

1 +∑K
k=1 e

β0+β1xk
− (

∑K
k=1 xke

β0+β1xk

1 +∑K
k=1 e

β0+β1xk
)
2

can be rewritten as

(1 +∑K
k=1 e

β0+β1xk)∑K
k=1 x

2
k e

β0+β1xk − (∑K
k=1 xke

β0+β1xk)2

(1 +∑K
k=1 e

β0+β1xk)2
. (3)

Applying the CauchySchwarz inequality to the numerator, we get

(
K

∑
k=1

xke
β0+β1xk)

2

≤ (
K

∑
k=1

x
2
k e

β0+β1xk)(
K

∑
k=1

e
β0+β1xk) .

Therefore, the equation (3) is further fimplified to be ≥ 0.

Thus, the inequality holds due to the CauchySchwarz inequality, confirming
the convexity of the expression.
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Quiz Time

Please go to Quercus and start the quiz.

The passcode for the quiz is sta314qq.
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