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Linear Discriminant Analysis — Review

Suppose we have K classes, C ={0,1,2,...,K —1}. Forany k € C,
recall:

@ we write

T i= P(Y = k)

as the prior probability that a randomly chosen observation comes
from the k-th class.
@ Define
fi(x) =P(X=x|Y =k)
as the conditional density function of X = x € R from class k.

@ In discriminant analysis, a parametric assumption is made on f(x).
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Linear Discriminant Analysis — Review

@ According to the Bayes classifier, we should classify a new point
X = x according to

Ty (x)

arg max pr(x) := arg max =— "~
C Ypecmefe(x)

= arg max i (x).
gkecmk( )

@ Assume that
XY =k~N(u,op), YkeC,

namely,

RY:
fi(x) = ! exp(—w).

27rai 20}

o Linear Discriminant Analysis (LDA) further assumes

2 2 2 2
og =01 ="
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Linear Discriminant Analysis — Continued

@ As a result, the Bayes rule classifies X = x as

= |
arg max py(x) = arg maxlog(pi(x))

L(X))
2 rec mefo(x)
= arg max log(myfi(x))

2
= arg max log | L exp —M
keC o2 202

2 2
(X" + pi - 2XMI<))

= arg max log (

202

with the goal of maximizing with respect to k

1 2
= arg max (Iog(wk) -3 log(2mo”) —

|3 #k
m [l SV . SR
arg T ax( X + og(wk)>
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Linear Discriminant Analysis - MLE

2
If we know pg, ..., k-1, 0°, and mg, ..., TK_1, then we can construct the

Bayes rule. However, we typically dont know these parameters and need to
estimate them from the training data!

Given training data (xq,y1), ..., (Xn, ¥,) for all k € C, we have three

parameters to estimate: my, py, and 02. How can you find them
using maximum likelihood estimation (MLE)?
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Linear Discriminant Analysis - MLE

Let's start with the likelihood function. Given pairs of data (x;,y;) fori=1,...,n
we have:

n

L(,LLO,...,MK_1,7T0,...,7TK_1,0') = l_[ L(\/l = YI7XI = Xi)'
i=1

This gives us the log-likelihood function:
£:=log L(H07 sy HK=1,T05 - - s TK-15 U)

ZIog(L(Y Vi, Xi = x;))
1

K-1
= Y log(L(Y; = k. X; = x;))
k=0 1<i<n,y;=k
K-1
= > log(L(X; =x; | Yi = k)L(Y; = k))
k=0 1<i<n,y;=k
K-1

2
= Z Z log(my) — %Iog(27r02) _bimm)

2
k=0 1<i<ny;=k 20
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MLE for 7

@ Notice that you cannot take direct derivatives with respect to
because they are constrained by Z,’LO e = 1.

o If K =1, the response variable is binary. Then, with m; = 1 — g, the
analysis follows the Bernoulli distribution MLE covered in Tutorial 6.

o If K = 2, we need to use Lagrange multipliers on a Multinomial
distribution to find the solution. For more information, you can read
here.
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https://en.wikipedia.org/wiki/Lagrange_multiplier
https://blog.jakuba.net/maximum-likelihood-for-multinomial-distribution/

Linear Discriminant Analysis - MLE for g, o’

Now, for p and 02, we can take the partial derivatives as follows:

ol g & 1 o (x5 — k)’
— = | — = log(2 -
TR kZO 15,-§y,.=k( og (k) = 5 log(2mo”) >

- ¥ (xi _2/ﬁk).

1<isnyi=k @

which gives us the Maximum Likelihood Estimator for pi:
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Linear Discriminant Analysis - MLE for g, o’

Now for 02, we take the partial derivatives:

1
log(my) — 5 Iog(27r02) -

K-1
- (_L+ M)

202 204

202

(xi — uk)z)

3
)
N
|
o5
|
N
PN
'H
—

Setting this derivative to zero and solving, we obtain the maximum
likelihood estimator for o:
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Review of Multinomial Logit Model (Optional)

Recall the question on Multinomial Logit Model during Midterm 2:

Problem 4 Midterm 2

The Multinomial Logit Model (MLM) is a popular model for multi-
class classification problems. Imagine a study where individuals are
asked to choose their preferred product among a list of K + 1 items.
For each product, we have a measurement of its attributes. Here, we
consider only one attribute, such as price. The prices of each product
are xg, X1, ..., Xk-. I he MLM assumes that the customer makes their
choice Y according to:

P(Y = k)

og — ¢
S B(Y = 0)
Product 0 is chosen as the baseline. We write Y = k if the customer
chooses product k. The unknown coefficients 55* and Bf represent

the customer's "taste” for price. Suppose we observe n i.i.d. choices
Y1,-..,Yn of a chosen customer according to the above model.

l =B + Bixe, ke{l,...,K}
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Probability Mass Function for Each Class k (Optional)

We start by calculating the probability mass function for each class 0, .. ., K:
By definition, for all 1 < k < K,
P(Y = k) = 1Py = 0) (1)

Since:

& K * *
1= B(Y = k) +B(Y =0) =p(y=0)(zeao+ﬁlxk +1)’
k=t k=1

we have:
1
Zszl Bo+Bix 41

Plugging in equation (1), we obtain:

P(Y =0) =

* *
+B1 X
eﬁo B1 Xk

Zszl eBotBix 41

P(Y = k) =
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Log-likelihood Function at any [y, 51 (Optional)

Let ng = Y -, 1{y; = k}, for all k € {0,1,...,K}.
The likelihood of y, is:

L(Bo, B1iy1) = ﬂ]p(y k) Hon=k}

so that the log-likelihood of yy,...,y, at any By, 581 is:

K

(Po.r) =) ) Uyi = k}Hlog[B(y; = k)]

1 k=0

K
Wy = 0}( Iog(l + ) exp(Bo + 51Xk)))
k=1
n K K
> > W=k (ﬁo + A1 — log (1 + ) exp(Bo + ﬁm)))

i=1 k=1 k=1

K K
= > m(Bo+ Bix) - nlog (1 + Y exp(fo + /lek)) (2)

k=1

-

+
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Gradient Descent for 3; (Optional)

Suppose we know 35 = 0 and we only maximize the log-likelihood function

0(p1) :=€(Bp = 0, 31) in equation (2) over 3; € R to compute the MLE
of 7.

Write
1

1+ Zle eBotBrxi

po(Bo, 1) =

and

+
eﬂo B1Xk

1+ ZkK=1 eBo+B1x ’

px(Bo, B1) =

ke{l,...,K}.

. . N . 5 (0 . . .
Starting from a given initialization ﬁl( ) with a given step size (learn-
ing rate) «, state the gradient descent iterates for computing
the MLE of 7. (You need to derive the expression of the gradient).
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Gradient Descent — Continued (Optional)

Since

K X
9L(bo, P1) _ i" . —n Y ey €00
dP1 Kk + YK ehorhu

K
Z [ = npi(Bos B1) ] Xk

k=1

the Gradient Descent Update for Bl foIIows as

K
5 (t41) _ 4 (1) 5 (1)
b1 = (1 —QZ[nk—nPk(0,51 )]Xk-
k=1
Specifically,
A (£) egl(t)x“
pk(oyﬁl ) =

O
IR IR

Teaching team of STA314 (UofT) STA314-Tut07



Convexity of the log-likelihood function when K =1

(Optional)

Convexity: Recall that a function f : R — R is said to be convex if
F(Ax+(1=XN)y) <A (x)+(1=X)f(y) forall x,y e Rand all A € [0,1].
A sufficient condition for f(x) to be convex is f'(x) = 0 for all x.

Suppose K = 1. Prove that the negative log-likelihood, —¢(/31), in
the previous subquestion is a convex function of 8. Reason whether

or not the MLE of 3; can be computed via the gradient descent you
derived above with a suitable step size.
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Convexity — Continued (Optional)

From the previous part,

2 K 2 K 2
_8 £(Bo, B1) - Zk:l Xke’g“ﬁlxk ~ Zk=1 Xke’3°+ﬁw
8ﬁf 1+ Zszl ePotBuxi 1+ Zszl eBo+Buxi

For K =1 and By = 0, this simplifies to

2
X eﬂ1X1

n 5 0
(1+ePx)2

2 2
Ty 1€ W) = (™)) =

Therefore, we know that

P10 By) |
.

for all By and B;, hence £(B3;) is convex.

As a result of the convexity of ¢(31), and since the minimization is over
B1 € R, which is a convex space, gradient descent with a suitable step size
guarantees finding the MLE.

Teaching team of STA314 (UofT) STA314-Tut07



Convexity of the log-likelihood function when K > 2
(Optional)

Bonus Question:

Can you extend the result of the previous subquestion to K = 27

Hint: For any two sequences {ay,...,a,} and {by,..., by}, the
CauchySchwarz inequality states that

($on] <[54)(5.4)
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Convexity for K = 2 — Continued (Optional)

For general K = 2, we have the claim by noting that

2
2521 le eﬂo+51><k ~ Zszl Xk eﬂo*‘ﬁlxk
1+ Zl}f—l eBo+Brxk 1+ lef—l eBo+Bixk

can be rewritten as

2
(14 50, &) EI e — (£ ™)
(l + Zf_l eﬁo+ﬁ1xk)2
Applying the CauchySchwarz inequality to the numerator, we get

K 2 K K
( Xkeﬁo+51xk) < ( Z XEeBO+ﬁ1Xk) ( Z eﬂo+51><k) ]
k k=1 k=1

=1

3)

Therefore, the equation (3) is further fimplified to be = 0.

Thus, the inequality holds due to the CauchySchwarz inequality, confirming
the convexity of the expression.

Teaching team of STA314 (UofT) STA314-Tut07 ) R ) 19



Please go to Quercus and start the quiz.

The passcode for the quiz is sta314qq.
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