Derivation of Maximum Likelihood Estimators
(MLE)

Teaching team of STA314

Oct 21, 2024



MLE for Bernoulli Distribution
Problem: Flipping a coin with outcomes heads (1) and tails (0). p
denotes the probability of getting head. (xi,-- - x,) independent
samples.

Write out likelihood, then solve for its derivative, get closed
form solution.




MLE for Bernoulli Distribution

Problem: Flipping a coin with outcomes heads (1) and tails (0). p
denotes the probability of getting head. (xi,-- - x,) independent
samples.

Likelihood:

Lip | x1,...,xn) = pr"(l —p)t
i=1
Log-Likelihood:
n
{(p) = Z [xilnp+ (1 —x)In(1—p)]
i=1
Derivative and Solution:

dﬁ(p) n (X,' ].—X,')
_— = _— = 0
dp Z p l-p

i=1

1 n
p* = nZIX,'
=




MLE for Uniform(0, 6) Distribution
Problem: Observations xi, x», ..., X, are drawn from a uniform
distribution U(0, 0).
Parameter: 6 is the unknown upper bound, and we assume all x;
are between 0 and 6.

MLE for 87 Don’t need strict mathematics derivation, just
give a guess first.




MLE for Uniform(0, 6) Distribution

Problem: Observations xi, x», ..., X, are drawn from a uniform
distribution U(0, ). Parameter: 6 is the unknown upper bound,
and we assume all x; are between 0 and 6.

Likelihood:

l -f9> .. n
L(9|x1,...,xn):{9n7 if 0> max(xi,...,xn)

0, otherwise

Log-Likelihood:

() = {—nln@, if 0 > max(xi,...,xn)

—00, otherwise

MLE Solution: To maximize the likelihood, 8 must be as small as
possible while still being at least the largest observed value:

0" = max(x1,...,%p).



MLE for Linear Regression
Model: y; = x"B +¢;, € ~N(0,02). The errors are i.i.d.,
normally distributed with mean 0 and variance o2.

Parameter: 5.

Write out likelihood using pdf of normal distribution, then
take derivative with respect to (.




MLE for Linear Regression - Likelihood

Model: y; = x,-Tﬂ +¢€, € ~N(0,0%). The errors are i.i.d.,

normally distributed with mean 0 and variance o2.

Parameter: 3.

Likelihood:

oot =TT oo (U557)

i V2mo

|

Log-Likelihood: Taking the logarithm:

((B,0%) = —> |n 2m0?) 202 Z



MLE for Linear Regression - Direct Solution
Step-by-Step Derivation:
1. Focus on minimizing the sum of squared errors (OLS):

S(B)=> (vi—x'B)
i=1
2. Take the gradient of S(3) with respect to 3:
VsS(B) = —2XT(y — XB).
3. Set the gradient to zero to find the optimal solution:
X'XB=X"y.
4. Solve for 3 (assuming X " X is invertible):

B =(X"X)"XTy.

This is the MLE for linear regression.



Gradient Descent for Linear Regression

Objective: Minimize the sum of squared errors:

HB) =53 (i~ x5 BY
i=1

Gradient:
Vsd(B) = —X"(y — XB).
Gradient Descent Update Rule:

Ber1=Be+nX"(y — XBy),
where 7 is the learning rate.

Steps: 1. Initialize Bp randomly. 2. Update (3 iteratively using the
rule above. 3. Stop when the gradient norm is small or the change
in J(B) is negligible.



MLE for Logistic Regression

Model: P(y; =1 x;) = m

Write out Log-likelihood, get the gradient for 3, write out
gradient descent update rule.
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MLE for Logistic Regression - Model and Log-Likelihood

Model: P(yi =1 x) = troborgs.

Likelihood:

HE LX) = ﬁ <1 - expi—x,75)>yi <1 1+ expt—x;Tﬁ)>1_yi

i=1

Log-Likelihood: Taking the logarithm:

48) =Y [yx B 1n (1+ el B)]

i=1



Gradient Descent for Logistic Regression
Objective: Maximize the log-likelihood function:

48) =Y [yx B 1n 1+ e )]
i=1
Gradient:

n

Vel(B) =) _ x; <y" 1+ expt—xm)) '

i=1
Gradient Descent Update Rule:

n
Biy1 = B¢ JFﬁz:)(i ()/i —
=1

1 >
1+exp(—x;'B¢) /)’
where 7 is the learning rate.
Steps: 1. Initialize By randomly. 2. Update 3 iteratively using the
rule above. 3. Stop when the gradient norm is small or the
log-likelihood stabilizes.
Note: Logistic regression has no closed-form solution, so gradient
descent (or other optimization methods) is necessary.



Conclusion

» MLE provides a principled approach for parameter estimation.

» Some models (e.g., Bernoulli) have closed-form solutions.

» Others (e.g., Logistic Regression) require optimization
techniques.



