Derivation of Maximum Likelihood Estimators (MLE)

Teaching team of STA314

Oct 21, 2024

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

MLE for Bernoulli Distribution

Problem: Flipping a coin with outcomes heads (1) and tails (0). p denotes the probability of getting head. (x_1, \dots, x_n) independent samples.

Write out likelihood, then solve for its derivative, get closed form solution.

MLE for Bernoulli Distribution

Problem: Flipping a coin with outcomes heads (1) and tails (0). p denotes the probability of getting head. (x_1, \dots, x_n) independent samples.

Likelihood:

$$L(p \mid x_1,...,x_n) = \prod_{i=1}^n p^{x_i}(1-p)^{1-x_i}$$

Log-Likelihood:

$$\ell(p) = \sum_{i=1}^{n} [x_i \ln p + (1 - x_i) \ln(1 - p)]$$

Derivative and Solution:

$$\frac{d\ell(p)}{dp} = \sum_{i=1}^{n} \left(\frac{x_i}{p} - \frac{1 - x_i}{1 - p} \right) = 0$$
$$p^* = \frac{1}{n} \sum_{i=1}^{n} x_i$$

MLE for Uniform(0, θ) Distribution

Problem: Observations $x_1, x_2, ..., x_n$ are drawn from a uniform distribution $U(0, \theta)$. **Parameter:** θ is the unknown upper bound, and we assume all x_i are between 0 and θ .

MLE for θ ? Don't need strict mathematics derivation, just give a guess first.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

MLE for Uniform(0, θ) Distribution

Problem: Observations $x_1, x_2, ..., x_n$ are drawn from a uniform distribution $U(0, \theta)$. **Parameter:** θ is the unknown upper bound, and we assume all x_i are between 0 and θ .

Likelihood:

$$L(\theta \mid x_1, \dots, x_n) = egin{cases} rac{1}{ heta^n}, & ext{if } heta \geq \max(x_1, \dots, x_n) \\ 0, & ext{otherwise} \end{cases}$$

Log-Likelihood:

$$\ell(\theta) = \begin{cases} -n \ln \theta, & \text{if } \theta \geq \max(x_1, \dots, x_n) \\ -\infty, & \text{otherwise} \end{cases}$$

MLE Solution: To maximize the likelihood, θ must be as small as possible while still being at least the largest observed value:

$$\theta^* = \max(x_1,\ldots,x_n).$$

MLE for Linear Regression

Model: $y_i = \mathbf{x}_i^\top \boldsymbol{\beta} + \epsilon_i$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. The errors are i.i.d., normally distributed with mean 0 and variance σ^2 . **Parameter:** $\boldsymbol{\beta}$.

Write out likelihood using pdf of normal distribution, then take derivative with respect to β .

MLE for Linear Regression - Likelihood

Model: $y_i = \mathbf{x}_i^\top \boldsymbol{\beta} + \epsilon_i$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. The errors are i.i.d., normally distributed with mean 0 and variance σ^2 . **Parameter:** $\boldsymbol{\beta}$.

Likelihood:

$$L(\boldsymbol{\beta}, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \boldsymbol{x}_i^{\top}\boldsymbol{\beta})^2}{2\sigma^2}\right)$$

Log-Likelihood: Taking the logarithm:

$$\ell(\boldsymbol{\beta},\sigma^2) = -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n(y_i - \boldsymbol{x}_i^{\top}\boldsymbol{\beta})^2$$

MLE for Linear Regression - Direct Solution

Step-by-Step Derivation:

1. Focus on minimizing the sum of squared errors (OLS):

$$S(oldsymbol{eta}) = \sum_{i=1}^n (y_i - oldsymbol{x}_i^ opoldsymbol{eta})^2$$

2. Take the gradient of $S(\beta)$ with respect to β :

$$\nabla_{\boldsymbol{\beta}} S(\boldsymbol{\beta}) = -2X^{\top}(y - X\boldsymbol{\beta}).$$

3. Set the gradient to zero to find the optimal solution:

$$X^{\top}X\beta = X^{\top}y.$$

4. Solve for β (assuming $X^{\top}X$ is invertible):

$$\boldsymbol{\beta}^* = (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top \boldsymbol{y}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This is the MLE for linear regression.

Gradient Descent for Linear Regression

Objective: Minimize the sum of squared errors:

$$J(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2$$

Gradient:

$$\nabla_{\boldsymbol{\beta}} J(\boldsymbol{\beta}) = -X^{\top}(y - X\boldsymbol{\beta}).$$

Gradient Descent Update Rule:

$$\beta_{t+1} = \beta_t + \eta X^\top (y - X\beta_t),$$

where η is the learning rate.

Steps: 1. Initialize β_0 randomly. 2. Update β iteratively using the rule above. 3. Stop when the gradient norm is small or the change in $J(\beta)$ is negligible.

MLE for Logistic Regression

Model:
$$P(y_i = 1 \mid \mathbf{x}_i) = \frac{1}{1 + \exp(-\mathbf{x}_i^\top \beta)}$$
.

Write out Log-likelihood, get the gradient for β , write out gradient descent update rule.

A D > A P > A B > A B >

э

MLE for Logistic Regression - Model and Log-Likelihood

Model:
$$P(y_i = 1 \mid \mathbf{x}_i) = \frac{1}{1 + \exp(-\mathbf{x}_i^\top \beta)}$$
.

Likelihood:

$$L(\beta \mid y, X) = \prod_{i=1}^{n} \left(\frac{1}{1 + \exp(-\boldsymbol{x}_{i}^{\top}\beta)}\right)^{y_{i}} \left(1 - \frac{1}{1 + \exp(-\boldsymbol{x}_{i}^{\top}\beta)}\right)^{1-y_{i}}$$

Log-Likelihood: Taking the logarithm:

$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left[y_i \boldsymbol{x}_i^\top \boldsymbol{\beta} - \ln\left(1 + \exp(\boldsymbol{x}_i^\top \boldsymbol{\beta})\right) \right]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Gradient Descent for Logistic Regression

Objective: Maximize the log-likelihood function:

$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left[y_i \boldsymbol{x}_i^\top \boldsymbol{\beta} - \ln\left(1 + \exp(\boldsymbol{x}_i^\top \boldsymbol{\beta})\right) \right]$$

Gradient:

$$abla_{oldsymbol{eta}}\ell(oldsymbol{eta}) = \sum_{i=1}^n oldsymbol{x}_i \left(y_i - rac{1}{1 + \exp(-oldsymbol{x}_i^ opoldsymbol{eta})}
ight).$$

Gradient Descent Update Rule:

$$\boldsymbol{\beta}_{t+1} = \boldsymbol{\beta}_t + \eta \sum_{i=1}^n \boldsymbol{x}_i \left(y_i - \frac{1}{1 + \exp(-\boldsymbol{x}_i^\top \boldsymbol{\beta}_t)} \right),$$

where η is the learning rate.

Steps: 1. Initialize β_0 randomly. 2. Update β iteratively using the rule above. 3. Stop when the gradient norm is small or the log-likelihood stabilizes.

Note: Logistic regression has no closed-form solution, so gradient descent (or other optimization methods) is necessary.

Conclusion

MLE provides a principled approach for parameter estimation.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Some models (e.g., Bernoulli) have closed-form solutions.
- Others (e.g., Logistic Regression) require optimization techniques.