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MLE for Bernoulli Distribution
Problem: Flipping a coin with outcomes heads (1) and tails (0). p
denotes the probability of getting head. (x1, · · · xn) independent
samples.

Write out likelihood, then solve for its derivative, get closed
form solution.



MLE for Bernoulli Distribution
Problem: Flipping a coin with outcomes heads (1) and tails (0). p
denotes the probability of getting head. (x1, · · · xn) independent
samples.
Likelihood:

L(p | x1, . . . , xn) =
n∏

i=1

pxi (1− p)1−xi

Log-Likelihood:

ℓ(p) =
n∑

i=1

[xi ln p + (1− xi ) ln(1− p)]

Derivative and Solution:

dℓ(p)

dp
=

n∑
i=1

(
xi
p
− 1− xi

1− p

)
= 0

p∗ =
1

n

n∑
i=1

xi



MLE for Uniform(0, θ) Distribution
Problem: Observations x1, x2, . . . , xn are drawn from a uniform
distribution U(0, θ).
Parameter: θ is the unknown upper bound, and we assume all xi
are between 0 and θ.

MLE for θ? Don’t need strict mathematics derivation, just
give a guess first.



MLE for Uniform(0, θ) Distribution
Problem: Observations x1, x2, . . . , xn are drawn from a uniform
distribution U(0, θ). Parameter: θ is the unknown upper bound,
and we assume all xi are between 0 and θ.

Likelihood:

L(θ | x1, . . . , xn) =

{
1
θn , if θ ≥ max(x1, . . . , xn)

0, otherwise

Log-Likelihood:

ℓ(θ) =

{
−n ln θ, if θ ≥ max(x1, . . . , xn)

−∞, otherwise

MLE Solution: To maximize the likelihood, θ must be as small as
possible while still being at least the largest observed value:

θ∗ = max(x1, . . . , xn).



MLE for Linear Regression
Model: yi = x⊤

i β + ϵi , ϵi ∼ N (0, σ2). The errors are i.i.d.,
normally distributed with mean 0 and variance σ2.
Parameter: β.

Write out likelihood using pdf of normal distribution, then
take derivative with respect to β.



MLE for Linear Regression - Likelihood

Model: yi = x⊤
i β + ϵi , ϵi ∼ N (0, σ2). The errors are i.i.d.,

normally distributed with mean 0 and variance σ2.
Parameter: β.

Likelihood:

L(β, σ2) =
n∏

i=1

1√
2πσ2

exp

(
−
(yi − x⊤

i β)2

2σ2

)

Log-Likelihood: Taking the logarithm:

ℓ(β, σ2) = −n

2
ln(2πσ2)− 1

2σ2

n∑
i=1

(yi − x⊤
i β)2



MLE for Linear Regression - Direct Solution
Step-by-Step Derivation:
1. Focus on minimizing the sum of squared errors (OLS):

S(β) =
n∑

i=1

(yi − x⊤
i β)2

2. Take the gradient of S(β) with respect to β:

∇βS(β) = −2X⊤(y − Xβ).

3. Set the gradient to zero to find the optimal solution:

X⊤Xβ = X⊤y .

4. Solve for β (assuming X⊤X is invertible):

β∗ = (X⊤X )−1X⊤y .

This is the MLE for linear regression.



Gradient Descent for Linear Regression

Objective: Minimize the sum of squared errors:

J(β) =
1

2

n∑
i=1

(yi − x⊤
i β)2

Gradient:
∇βJ(β) = −X⊤(y − Xβ).

Gradient Descent Update Rule:

βt+1 = βt + ηX⊤(y − Xβt),

where η is the learning rate.

Steps: 1. Initialize β0 randomly. 2. Update β iteratively using the
rule above. 3. Stop when the gradient norm is small or the change
in J(β) is negligible.



MLE for Logistic Regression

Model: P(yi = 1 | xi ) = 1
1+exp(−x⊤

i β)
.

Write out Log-likelihood, get the gradient for β, write out
gradient descent update rule.



MLE for Logistic Regression - Model and Log-Likelihood

Model: P(yi = 1 | xi ) = 1
1+exp(−x⊤

i β)
.

Likelihood:

L(β | y ,X ) =
n∏

i=1

(
1

1 + exp(−x⊤
i β)

)yi
(
1− 1

1 + exp(−x⊤
i β)

)1−yi

Log-Likelihood: Taking the logarithm:

ℓ(β) =
n∑

i=1

[
yix⊤

i β − ln
(
1 + exp(x⊤

i β)
)]



Gradient Descent for Logistic Regression
Objective: Maximize the log-likelihood function:

ℓ(β) =
n∑

i=1

[
yix⊤

i β − ln
(
1 + exp(x⊤

i β)
)]

Gradient:

∇βℓ(β) =
n∑

i=1

xi
(
yi −

1

1 + exp(−x⊤
i β)

)
.

Gradient Descent Update Rule:

βt+1 = βt + η

n∑
i=1

xi
(
yi −

1

1 + exp(−x⊤
i βt)

)
,

where η is the learning rate.
Steps: 1. Initialize β0 randomly. 2. Update β iteratively using the
rule above. 3. Stop when the gradient norm is small or the
log-likelihood stabilizes.
Note: Logistic regression has no closed-form solution, so gradient
descent (or other optimization methods) is necessary.



Conclusion

▶ MLE provides a principled approach for parameter estimation.

▶ Some models (e.g., Bernoulli) have closed-form solutions.

▶ Others (e.g., Logistic Regression) require optimization
techniques.


