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Classification problems

Problem set 3 Q2

Consider the classification problem with the label of Y belong to

C:={1,2,...,K} and any realization x of X € RP. The Bayes classifier
f* at X = x is defined as

f*(x) := argmin E[l{Y (X))} X = x]
f(x)eC

1. Prove that
f*(x) = argmax P(Y = k | X = x).
keC

2. Prove that the Bayes error at X = x equals to

l-max P(Y =k| X =x).
keC
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Problem set 3 - Q2

1. Prove that
f*(x) = argmaxyee P(Y =k | X = x).

P(Y=f(X)|X=x)=) P(Y=F(X)=k|X=x)

keC

=Y P(Y =k | X =x) 1{f(x) = k}
keC

smaxP(Y =k | X =x).
keC

Moreover, the maximal value is achieved when f(x) = k™ for

k* = argmaxP (Y = k | X = x).
keC

This proves the first claim. [

v
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Problem set 3 Q2

2. Prove that the Bayes error at X = x equals to

1-max P(Y =k| X =x).
keC

By similar reasoning,

P(Y#f (X) | X=x)=1-P(Y =f(X)| X =x)

=1-) P(Y = k| X =x)1{f"(x) = k}
keC

=1-maxP(Y = k| X = x).
keC
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Problem set 3 Q2

3. Consider that K = 3. For a fixed xp, assume that

P(Y =1| X =x) =05
P(Y =2 | X =x) =0.3
P(Y =3 | X = x) = 0.2.

State the Bayes classifier at X = xg and compute its error at X = xg.

As a reminder, the Bayes classifier f* at X = x is defined as

f*(x) := argmin ]E[l{Y + (X))} X = x:|
f(x)eC

We can see that f*(xp) = 1 since that’s the label with highest probability.
Using the solution from 2 the Bayes error at X = xg is 0.5
O

V.
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Problem set 3 Q2

4. Consider a naive classifier f, called random guessing, which randomly
picks one label from C = {1, 2,3} with equal probability. Compare its
expected error rate at X = xg with the Bayes error from part 3.

Solution (1/2).

The expected error rate of f at Xp IS

E[1{f(><) £Y}| X = xo] =P(F(X) # Y | X = x)
=1-P(f(X)=Y | X =x)
=1-) P(Y = c|X = x)P(F(X) = c|X = x)

ceC
=1-) P(Y =c| X =x)P(f(X) = c)

ceC

Continues in next slide OJ

v
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Problem set 3 Q2

The expected error rate of f at Xp Is
E[l{f(X) £Y}| X = xo] =1- ) B(Y =c| X = x)P(f(X) = )
ceC
1
=1—§ZP(Y=C|X=X0)
ceC
1 2
=1- §[0.5 +03+0.2] = 3
which is greater than the Bayes error. [
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Problem set 3 Q3

We will prove that a random guessing classifier for binary classification has
the area under the curve (AUC) equal to 1/2.

Suppose Y € {0,1} with Y = 1 meaning true, and false otherwise.
Consider the following random guessing classifier at any X = x

f( ) = 1, with prob. equal to p
) =1 0, with prob. equalto 1 —p

with any p chosen from [0,1].
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Problem set 3 Q3

1. Prove that the expected AUC of this random classifier with p varying
within [0,1] is 1/2.

The expected FPR is

P(F(X)=1|Y=0)=P(f(X)=1=p
while the expected FNR is
P(f(X)=0|Y =1)=P(f(X)=0)=1-p.
Note that the expected TPRis 1 —P(f(X) =0 | Y = 1) = p. Therefore,

the AUC of f is
L 1
J' dp = =.
0 2 2
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Problem set 3 Q3

2. Let n(x) :=P(Y =1| X = x) for any x. Write the expected error

~

rate of £ at X = x in terms of n(x) and p.

The expected error rate at X = x equals to

P(Y # f(x) | X=x)
=P(Y=1,f(x)=0| X=x)+P(Y =0,f(x) =1]| X=x)
=P(Y =1| X=x)P(f(x) =0 | X=x)

+P(Y =0 | X=x)P(f(x) =1 | X=x)
=P(Y =1| X=x)P(f(x) =0) +P(Y =0 | X=x)P(f(x) = 1)
=n(x)(1 = p) + (1 = n(x))p.

Ol

v
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Problem set 3 Q3

3. If you have the flexibility of choosing p in your expression of part 2,
which choice minimizes the expected error rate of f at X = x? Is the
resulting classifier equivalent to the Bayes classifier? State your

explanation.

We choose
(1 ifnp(x)=1/2
“ | 0 otherwise

The resulting classifier only equals to the Bayes classifier at this point but
not in general. Indeed, to match the Bayes classifier for all x, we need to

allow p = p(x) being a function that depends on x. Ol
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