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Classification problems
Problem set 3 Q2

Consider the classification problem with the label of Y belong to
C ∶= {1, 2, . . . ,K} and any realization x of X ∈ Rp

. The Bayes classifier
f
∗
at X = x is defined as

f
∗(x) ∶= argmin

f (x)∈C
E[1{Y ≠ f (X )} ∣X = x]

1. Prove that
f
∗(x) = argmax

k∈C
P (Y = k ∣ X = x) .

2. Prove that the Bayes error at X = x equals to

1 −max
k∈C

P (Y = k ∣ X = x) .
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Problem set 3 - Q2

1. Prove that
f
∗(x) = argmaxk∈C P (Y = k ∣ X = x) .

Proof.

P (Y = f (X ) ∣ X = x) = ∑
k∈C

P(Y = f (X ) = k ∣ X = x)

= ∑
k∈C

P(Y = k ∣ X = x) 1{f (x) = k}

≤ max
k∈C

P (Y = k ∣ X = x) .

Moreover, the maximal value is achieved when f (x) = k
∗
for

k
∗
= argmax

k∈C
P (Y = k ∣ X = x) .

This proves the first claim.
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Problem set 3 Q2

2. Prove that the Bayes error at X = x equals to

1 −max
k∈C

P (Y = k ∣ X = x) .

Proof.

By similar reasoning,

P(Y ≠ f
∗(X ) ∣ X = x) = 1 − P(Y = f

∗(X ) ∣ X = x)
= 1 − ∑

k∈C
P(Y = k ∣ X = x)1{f ∗(x) = k}

= 1 −max
k∈C

P(Y = k ∣ X = x).
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Problem set 3 Q2

3. Consider that K = 3. For a fixed x0, assume that

P(Y = 1 ∣ X = x0) = 0.5

P(Y = 2 ∣ X = x0) = 0.3

P(Y = 3 ∣ X = x0) = 0.2.

State the Bayes classifier at X = x0 and compute its error at X = x0.

Solution.

As a reminder, the Bayes classifier f
∗
at X = x is defined as

f
∗(x) ∶= argmin

f (x)∈C
E[1{Y ≠ f (X )} ∣X = x]

We can see that f
∗(x0) = 1 since that’s the label with highest probability.

Using the solution from 2 the Bayes error at X = x0 is 0.5
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Problem set 3 Q2

4. Consider a naive classifier f̂ , called random guessing, which randomly
picks one label from C = {1, 2, 3} with equal probability. Compare its
expected error rate at X = x0 with the Bayes error from part 3.

Solution (1/2).

The expected error rate of f̂ at x0 is

E[1{f̂ (X ) ≠ Y } ∣ X = x0] = P(f̂ (X ) ≠ Y ∣ X = x0)

= 1 − P(f̂ (X ) = Y ∣ X = x0)
= 1 −∑

c∈C
P(Y = c ∣X = x0)P(f̂ (X ) = c∣X = x0)

= 1 − ∑
c∈C

P(Y = c ∣ X = x0)P(f̂ (X ) = c)

Continues in next slide
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Problem set 3 Q2

Solution (2/2).

The expected error rate of f̂ at x0 is

E[1{f̂ (X ) ≠ Y } ∣ X = x0] = 1 − ∑
c∈C

P(Y = c ∣ X = x0)P(f̂ (X ) = c)

= 1 −
1

3
∑
c∈C

P(Y = c ∣ X = x0)

= 1 −
1

3
[0.5 + 0.3 + 0.2] = 2

3
,

which is greater than the Bayes error.
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Problem set 3 Q3

We will prove that a random guessing classifier for binary classification has
the area under the curve (AUC) equal to 1/2.
Suppose Y ∈ {0, 1} with Y = 1 meaning true, and false otherwise.
Consider the following random guessing classifier at any X = x

f̂ (x) = { 1, with prob. equal to p
0, with prob. equal to 1 − p

with any p chosen from [0, 1].
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Problem set 3 Q3

1. Prove that the expected AUC of this random classifier with p varying
within [0, 1] is 1/2.

Proof.

The expected FPR is

P(f̂ (X ) = 1 ∣ Y = 0) = P(f̂ (X ) = 1 = p

while the expected FNR is

P(f̂ (X ) = 0 ∣ Y = 1) = P(f̂ (X ) = 0) = 1 − p.

Note that the expected TPR is 1 − P(f̂ (X ) = 0 ∣ Y = 1) = p. Therefore,
the AUC of f̂ is

∫
1

0
pdp =

1

2
.
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Problem set 3 Q3

2. Let η(x) ∶= P(Y = 1 ∣ X = x) for any x . Write the expected error
rate of f̂ at X = x in terms of η(x) and p.

Proof.

The expected error rate at X = x equals to

P(Y ≠ f̂ (x) ∣ X =x)
= P(Y = 1, f̂ (x) = 0 ∣ X =x) + P(Y = 0, f̂ (x) = 1 ∣ X =x)
= P(Y = 1 ∣ X =x)P(f̂ (x) = 0 ∣ X =x)

+ P(Y = 0 ∣ X =x)P(f̂ (x) = 1 ∣ X =x)
= P(Y = 1 ∣ X =x)P(f̂ (x) = 0) + P(Y = 0 ∣ X =x)P(f̂ (x) = 1)
= η(x)(1 − p) + (1 − η(x))p.
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Problem set 3 Q3

3. If you have the flexibility of choosing p in your expression of part 2,
which choice minimizes the expected error rate of f̂ at X = x? Is the
resulting classifier equivalent to the Bayes classifier? State your
explanation.

Proof.

We choose

p = { 1 if η(x) ≥ 1/2
0 otherwise

The resulting classifier only equals to the Bayes classifier at this point but
not in general. Indeed, to match the Bayes classifier for all x , we need to
allow p = p(x) being a function that depends on x .
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