Tutorial 3: Shrinkage Effects of Ridge and Lasso

Teaching Team of STA314

Department of Statistical Sciences University of Toronto

Monday September 23, 2024

Recall: Ridge Regression

$$\hat{\boldsymbol{\beta}}_{\lambda}^{R} = \underset{\boldsymbol{\beta} = (\beta_{0}, \dots, \beta_{p}) \in \mathbb{R}^{p+1}}{\operatorname{argmin}} \underbrace{\sum_{i=1}^{n} (y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{ij})^{2}}_{RSS} + \lambda \sum_{j=1}^{p} \beta_{j}^{2}.$$

where $\lambda \ge 0$ is the tuning parameter and $\lambda \sum_{j=1}^{p} \beta_{j}^{2}$ is a shrinkage/regularization penalty.

Recall: Lasso Regression

The lasso coefficients, $\hat{\beta}_{\lambda}^{L}$, minimize the quantity

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

In the case of the lasso, the ℓ_1 penalty has the effect of forcing some of the coefficient estimates to be exactly zero when the tuning parameter λ is sufficiently large.

Toy Example: the Shrinkage Effects of Ridge and Lasso

- Assume that n = p and $\mathbf{X} = \mathbf{I}_n$. We force the intercept term $\beta_0 = 0$.
- In this way,

$$\begin{bmatrix} y_1 \\ \vdots \\ y_p \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_p \end{bmatrix}.$$

We assume

$$\mathbb{E}[\epsilon_j] = 0, \qquad \mathbb{E}[\epsilon_j^2] = \sigma^2, \qquad \forall j \in \{1, \dots, p\}.$$

Toy Example: OLS Estimator

• The OLS approach is to find β_1, \ldots, β_p that minimize

$$\sum_{j=1}^{p} (y_j - \beta_j)^2.$$

This gives the OLS estimator

$$\hat{\beta}_j = y_j, \quad \forall j \in \{1, \dots, p\}.$$

Toy Example: Ridge Estimator

• The ridge regression looks for β_1, \dots, β_p that minimize

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2.$$

This leads to the ridge estimator

$$\hat{\beta}_j^R = \frac{y_j}{1+\lambda}, \quad \forall j \in \{1,\dots,p\}.$$

Since $\lambda \ge 0$, the magnitude of each estimated coefficient is proportionally shrinked towards 0.

Toy Example: Lasso Estimator

• Lasso looks for β_1, \ldots, β_p that minimize

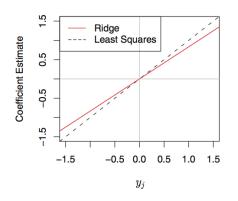
$$\sum_{j=1}^p (y_j-\beta_j)^2 + \lambda \sum_{j=1}^p |\beta_j|.$$

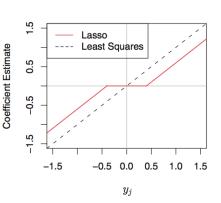
Which results in

$$\hat{\beta}_j^L = \begin{cases} y_j - \lambda/2 & \text{if } y_j > \lambda/2; \\ y_j + \lambda/2 & \text{if } y_j < -\lambda/2; \\ 0 & \text{if } |y_j| \le \lambda/2. \end{cases}$$

The estimated coefficients from Lasso are shrinked by a fixed amount, and equal to zero when the OLS estimate is in $[-\lambda/2, \lambda/2]$. The above shrinkage is known as **soft-thresholding**.

Toy Example: An Illustrative Figure





Toy Example: Bias and Variance of the OLS

Recall

$$y_j = \beta_j + \epsilon_j, \quad \forall j \in \{1, \dots, p\}.$$

For any $j \in \{1, ..., p\}$, the OLS estimator $\hat{\beta}_j = y_j$ satisfies

Bias:

$$\mathbb{E}[\hat{\beta}_j] = \mathbb{E}[y_j] = \mathbb{E}[\beta_j + \epsilon_j] = \beta_j$$
$$\mathbb{E}[\hat{\beta}_j^R] - \beta_j = 0$$

Variance:

$$Var(\hat{\beta}_j) = Var(\epsilon_j) = \sigma^2$$

Toy Example: MSE of the OLS

• Mean squared error of the *j*th coefficient:

$$\mathbb{E}\left[\left(\hat{\beta}_{j} - \beta_{j}\right)^{2}\right] = \left(\mathbb{E}\left[\hat{\beta}_{j}\right] - \beta_{j}\right)^{2} + \mathsf{Var}(\hat{\beta}_{j}) = \sigma^{2}$$

• Mean squared error of all p coefficients:

$$\mathbb{E}\left[\sum_{j=1}^{p} \left(\hat{\beta}_{j} - \beta_{j}\right)^{2}\right] = p\sigma^{2}.$$

Toy Example: Bias and Variance of Ridge

Recall

$$y_j = \beta_j + \epsilon_j, \quad \forall j \in \{1, \dots, p\}.$$

For any $j \in \{1, ..., p\}$, the ridge estimator with tuning parameter λ ,

$$\hat{\beta}_j^R = \frac{y_j}{1+\lambda},$$

satisfies

• Bias:

$$\mathbb{E}[\hat{\beta}_{j}^{R}] = \mathbb{E}\left[\frac{y_{j}}{1+\lambda}\right] = \mathbb{E}\left[\frac{\beta_{j}+\epsilon_{j}}{1+\lambda}\right] = \frac{\beta_{j}}{1+\lambda}$$
$$\mathbb{E}[\hat{\beta}_{j}^{R}] - \beta_{j} = \frac{-\lambda\beta_{j}}{1+\lambda}$$

Variance:

$$Var(\hat{\beta}_j^R) = Var\left(\frac{\epsilon_j}{1+\lambda}\right) = \frac{\sigma^2}{(1+\lambda)^2}$$

Toy Example: MSE of the Ridge

Mean squared error of the jth coefficient:

$$\begin{split} \mathbb{E}\Big[\Big(\hat{\beta}_j^R - \beta_j\Big)^2\Big] &= \Big(\mathbb{E}\big[\hat{\beta}_j^R\big] - \beta_j\Big)^2 + \mathsf{Var}(\hat{\beta}_j^R) \\ &= \left(\frac{\beta_j}{1+\lambda} - \beta_j\right)^2 + \frac{\sigma^2}{(1+\lambda)^2} \\ &= \frac{\lambda^2 \beta_j^2}{(1+\lambda)^2} + \frac{\sigma^2}{(1+\lambda)^2}. \end{split}$$

Recall that $\mathbb{E}[(\hat{\beta}_i - \beta_i)^2] = \sigma^2$.

• Mean squared error of all p coefficients:

$$\mathbb{E}\left[\sum_{j=1}^{p} \left(\hat{\beta}_{j}^{R} - \beta_{j}\right)^{2}\right] = \frac{\lambda^{2} \sum_{j=1}^{p} \beta_{j}^{2} + p\sigma^{2}}{(1+\lambda)^{2}}.$$

Quiz Time!