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Recall: Approaches for Model Selection

In an ideal scenario, we train a set of models on a training set, estimate
their expected MSE by evaluating them on a separate test set, and then
choose the model with the lowest test MSE.

But what happens when we don’t have a test set?

As we saw in Lecture 3, there are two approaches we can consider:

Estimate the expected MSE by “holding out” a portion of your
training data for validation:

Validation set approach
Cross-validation approach

Make an adjustment to the training error to penalize more complex
models:

Mallow’s Cp

Adjusted R2

AIC and BIC
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Validation Set Approach

Randomly divide the dataset into a training set and a validation set

Train on the training set and then compute MSE on the validation set
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k-Fold Cross-Validation

Randomly divide the data into k (roughly) equal-sized folds
Treat the first fold as the validation set, and take the remaining folds
to be the training set
Repeat with the second fold as the validation set, and the other folds
as the training set

And so on...

Evaluate the model by taking the average of the k validation MSEs
obtained
If k = n, we have leave-one-out cross-validation
For larger datasets, k = 5 or k = 10 is more common
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Mallow’s Cp

Let p be the total number of parameters in the model. Then

Cp(f̂ ) :=
1

n
RSS(f̂ ) +

2pσ2

n
.

Usually σ2 is unknown and we replace it with a consistent estimator σ̂2.
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AIC

Let f̂ be the fitted model obtained from the MLE approach so that L(f̂ ) is
the maximum of the likelihood function. The Akaike information criterion
(AIC) is

AIC(f̂ ) = −2 log L(f̂ ) + 2p. (1)

In lecture, we said that if f̂ is a linear model with εi ∼ N (0, σ2) i.i.d., then
AIC(f̂ ) and Cp(f̂ ) select the same model.

Let’s prove it!
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AIC and Cp Equivalence

Recall that in a linear model, with Gaussian noise, we write

y = xTβ + ε.

Therefore, given a dataset Dtrain = {(x1, y1), . . . , (xn, yn)}, the likelihood
of β is

L(β) =
1

(2πσ)
n
2

exp

(
− 1

2σ2

n∑
i=1

(yi − xTi β)2
)
.

Thus, the negative log-likelihood is (up to terms not depending on β)

1

2σ2

n∑
i=1

(yi − xTi β)2,

which is proportional to RSS(β).
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AIC and Cp Equivalence

So, up to constant terms, we have

AIC(β) =
1

σ2
RSS(β) + 2p.

But multiplying this by σ2

n gives us exactly Cp(β). Since this constant
factor does not depend on β, minimizing AIC and Cp(β) give the same
solution.
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BIC

The Bayesian information criterion (BIC) is very similar to AIC, but applies
a stronger penalty (that depends on sample size) for more complex models:

BIC(f̂ ) = −2 log L(f̂ ) + (log n)p.

Note that AIC and BIC will not necessarily give the same solution for
linear models with Gaussian noise.
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Coding Example

For the remainder of the tutorial, let’s take a look at how we implement
cross-validation and forward selection.
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