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Recall: Approaches for Model Selection

In an ideal scenario, we train a set of models on a training set, estimate
their expected MSE by evaluating them on a separate test set, and then
choose the model with the lowest test MSE.

But what happens when we don't have a test set?

As we saw in Lecture 3, there are two approaches we can consider:

o Estimate the expected MSE by "holding out” a portion of your
training data for validation:
o Validation set approach
o Cross-validation approach
@ Make an adjustment to the training error to penalize more complex
models:
o Mallow's C,
o Adjusted R?
e AIC and BIC
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Validation Set Approach

@ Randomly divide the dataset into a training set and a validation set

@ Train on the training set and then compute MSE on the validation set
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k-Fold Cross-Validation

e Randomly divide the data into k (roughly) equal-sized folds
@ Treat the first fold as the validation set, and take the remaining folds
to be the training set
@ Repeat with the second fold as the validation set, and the other folds
as the training set
e And so on...

@ Evaluate the model by taking the average of the k validation MSEs
obtained

o If k = n, we have leave-one-out cross-validation

o For larger datasets, k =5 or k = 10 is more common
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Mallow's C,

Let p be the total number of parameters in the model. Then

. 1 A 2po?
Go(F) = RSS(F) + P

n

Usually o2 is unknown and we replace it with a consistent estimator &2.
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Let f be the fitted model obtained from the MLE approach so that L(f) is
the maximum of the likelihood function. The Akaike information criterion
(AIC) is

AIC(f) = —2log L(f) + 2p. (1)

In lecture, we said that if £ is a linear model with &; ~ N(0,0?) i.i.d., then

~ ~

AIC(f) and C,(f) select the same model.

Let's prove it!
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AIC and C, Equivalence

Recall that in a linear model, with Gaussian noise, we write
y=x"8+e.

Therefore, given a dataset Dtrain — {(x1,%1),---,(Xn,yn)}, the likelihood
of B is

1 1 <
L(B) = ——Fexp| — = ,-—X,-T 2).
)= Goayz =~ 02 20— 75)
Thus, the negative log-likelihood is (up to terms not depending on f3)
1 n
202 Z(Yi - XiT/B)za
i=1
which is proportional to RSS(/5).
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AIC and C, Equivalence

So, up to constant terms, we have
1
AIC(B) = QRSS(ﬂ) + 2p.

But multiplying this by "—nz gives us exactly Cp(f). Since this constant
factor does not depend on 3, minimizing AIC and C,(/3) give the same
solution.
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The Bayesian information criterion (BIC) is very similar to AIC, but applies
a stronger penalty (that depends on sample size) for more complex models:

BIC(f) = —2log L(f) + (log n)p.

Note that AIC and BIC will not necessarily give the same solution for
linear models with Gaussian noise.

Teaching Team of STA314 (UofT) Tutorial 2 Monday September 16, 2024 9 /10



Coding Example

For the remainder of the tutorial, let's take a look at how we implement
cross-validation and forward selection.
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