Linear Algebra and Probability Review¹

Xin Bing

Department of Statistical Sciences University of Toronto

Stat methods for ML (UofT) STA314-Tut02

1 / 21

¹Slides adapted from Ian Goodfellow's *Deep Learning* textbook lectures

About this tutorial

- Not a comprehensive survey of all of linear algebra and probability.
- Focused on the subset most relevant to machine learning.

Scalars

- A scalar is a single number
- Integers, real numbers, rational numbers, etc.
- Typically denoted in italic font:

a, n, x

Vectors

- A vector is an array of d numbers
- x_i be integer, real, binary, etc.
- Notation to denote type and size:

$$x \in \mathbb{R}^d$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

Matrices

- A matrix is an array of numbers with two indices
- $A_{i,j}$ be integer, real, binary, etc.
- Notation to denote type and size:

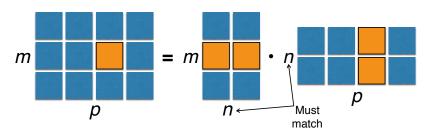
$$A \in \mathbb{R}^{m \times n}$$

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix}$$

Matrix (Dot) Product

Matrix product AB is the matrix such that

$$(AB)_{i,j} = \sum_k A_{i,k} B_{k,j}.$$



(Goodfellow 2016)

This also defines matrix-vector products Ax and $x^{T}A$.

Identity Matrix

The identity matrix for \mathbb{R}^d is the matrix I_d such that

$$\forall \mathbf{x} \in \mathbb{R}^d, I_d \mathbf{x} = \mathbf{x}$$

For example, I_3 :

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrix Transpose

The transpose of a matrix A is the matrix A^{\top} such that $(A^{\top})_{i,j} = A_{j,i}$.

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} \implies A^{\mathsf{T}} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \end{bmatrix}$$

The transpose of a matrix can be thought of as a mirror image across the main diagonal. The transpose switches the order of the matrix product.

$$(AB)^{\top} = B^{\top}A^{\top}$$

Systems of equations

The matrix equation

$$Ax = b$$

expands to

$$A_{1,1}x_1 + A_{1,2}x_2 + \cdots A_{1,n}x_n = b_1$$

$$A_{2,1}x_1 + A_{2,2}x_2 + \cdots A_{2,n}x_n = b_2$$

$$\vdots$$

$$A_{m,1}x_1 + A_{m,2}x_2 + \cdots A_{m,n}x_n = b_m$$

Solving Systems of Equations

A linear system of equations can have:

- No solution
- Many solutions
- Exactly one solution, i.e. multiplying by the matrix is an invertible function

Matrix Inversion

The matrix inverse of A is the matrix A^{-1} such that

$$A^{-1}A = I_d$$

Solving a linear system using an inverse:

$$A\mathbf{x} = \mathbf{b}$$

$$A^{-1}A\mathbf{x} = \mathbf{b}$$

$$I_d\mathbf{x} = A^{-1}\mathbf{b}$$

Can be numerically unstable to implement it this way in the computer, but useful for analysis.

Invertibility

Be careful, the matrix inverse does not always exist. For example, a matrix cannot be inverted if...

- More rows than columns
- More columns than rows
- Rows or columns can be written as linear combinations of other rows or columns ("linearly dependent")

Norms

- A norm is a function that measures how "large" a vector is
- Similar to a distance between zero and the point represented by the vector

$$f(\mathbf{x}) = 0 \implies \mathbf{x} = 0$$

 $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ (the triangle inequality)
 $\forall a \in \mathbb{R}, \ f(a\mathbf{x}) = |a|f(\mathbf{x})$

Norms

L^p norm

$$||\mathbf{x}||_{p} = \left(\sum_{i} |x_{i}|^{p}\right)^{\frac{1}{p}}$$

- Most popular norm: L2 norm, p = 2, i.e., the Euclidean norm.
- L1 norm:

$$||\mathbf{x}||_1 = \sum_i |x_i|$$

• Max norm, infinite norm:

$$\|\mathbf{x}\|_{\infty} = \max_{i} |x_{i}|$$

Special Matrices and Vectors

• Unit vector:

$$||\mathbf{x}||_2 = 1$$

• Symmetric matrix:

$$A = A^{\mathsf{T}}$$

Orthogonal matrix

$$A^{\top} A = A A^{\top} = I_d$$
$$A^{\top} = A^{-1}$$

Trace

• The trace of an $n \times n$ matrix is the sum of the diagonal

$$Tr(A) = \sum_{i} A_{i,i}$$

It satisfies some nice commutative properties

$$Tr(ABC) = Tr(CAB) = Tr(BCA)$$

In particular, for any vectors $v_1, v_2 \in \mathbb{R}^d$,

$$v_1^\top v_2 = \operatorname{Tr}\left(v_1^\top v_2\right) = \operatorname{Tr}\left(v_1 v_2^\top\right).$$

How to learn linear algebra

- Lots of practice problems.
- Start writing out things explicitly with summations and individual indexes.
- Eventually you will be able to mostly use matrix and vector product notation quickly and easily.

What is random and what is not random?

- In Probability & Statistics, we use capitalized letters for generic random variables (e.g. X and Y).
- The parameters such as β_1, \dots, β_p or the function $f : \mathcal{X} \to \mathcal{Y}$ are treated as deterministic (non-random). Of course, being Bayesian is an exception.
- The data points (x_i, y_i) for $1 \le i \le n$ are actual values, observed in practice. They can be thought as the <u>realizations of random variables</u> (X_i, Y_i) for $1 \le i \le n$.
- When we talk about estimators (e.g. the OLS estimator) which, by definition, are functions of (X_i, Y_i) , hence are random.
- Nevertheless, we will NOT distinguish between (x_i, y_i) and (X_i, Y_i) throughout the term, but you should have in mind that the training data (x_i, y_i) are random realizations.

Review of probability facts

Let X and Y be two random variables.

•

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

• More generally, for any function f,

$$Var(f(X)) = \mathbb{E}\left[\left(f(X) - \mathbb{E}[f(X)]\right)^2\right] = \mathbb{E}\left[\left(f(X)\right)^2\right] - \left(\mathbb{E}[f(X)]\right)^2.$$

X is said to be uncorrelated with Y if

$$Cov(X,Y)=0.$$

In particular, the fact that X is independent of Y implies that Cov(X, Y) = 0.

• For any constants a, b,

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y).$$

In particular, if X is uncorrelated with Y, then

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y).$$

• For any function f and g, if X is independent of Y, then

$$\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)],$$

and

$$\mathbb{E}[f(X) \mid Y] = \mathbb{E}[f(X)].$$

For any function h,

$$\mathbb{E}[h(X,Y)] = \mathbb{E}_X \left[\mathbb{E}_{Y|X}[h(X,Y) \mid X] \right]$$
$$= \mathbb{E}_Y \left[\mathbb{E}_{X|Y}[h(X,Y) \mid Y] \right]$$

where \mathbb{E}_X is the expectation w.r.t. the randomness of X whereas $\mathbb{E}_{Y|X}$ is w.r.t. the randomness of $Y \mid X$.