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Computation of the hard-margin SVM

Primal-formulation:

. 2
min ||w
min [[w

s.t. y,-(wa,-+b)21 i=1,...,n

e Convex, in fact, a quadratic program. (Stochastic) Gradient descent
can be directly used.

@ In practice, it is more common to solve the optimization problem
based on its dual formulation.
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Dual-formulation of the hard-margin SVM

For a;j = 0 for all i = 1,...,n, write the Lagrangian function

Lw, by = [IwllZ + > 0s[1 - yiw 5 + B)]

i=1

Taking the derivative w.r.t. w and b yields
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Plugging into L(w, b, ) yields
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Dual-formulation of the hard-margin SVM

The dual problem is

n n
ma 3 o 3 3 ayiyx x
i=1 j=1

i=1
s.t. Za,-y,-:O, 20, i=1,....n
i=1

The K.K.T. conditions ensure the following relationships between the
primal and dual formulations.

@ Their optimal objective values are equal.
@ The optimal solutions w and & satisfy

li Gy & >0, ify(w'x;+b)=1
2 L yixio & =0, ify (W x;+b)>1"
@ The predicted label for any x is

sign(WTx + b).
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Prime-formulation of the soft-margin SVM

Soft-margin SVM is equivalent to, for some C = C(K),

n
. 2
min [lwl3+C) ¢
W7b7C i=1

s.t. y,-(wa,-+b)21—C,-, (=0, i=1,...,n.
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Dual-formulation of the soft-margin SVM

It can be shown' that the dual-formulation of the soft-margin SVM is

n n
ZZ ozjy,ij X;
i=1j=1

n
s.t. Za;y,-=0, 0<a;<C, i=1,....n
i=1

n

Yo

i=1

-l>|'—‘

Here C > 0 is the tuning parameter.

'Chapter 12.2.1 in ESL.
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Kernel SVM: extension to non-linear boundary

Recall
1 n n
max ZZZ aJy,ny Xj
i=1 i=1 =1
s.t a,y,—O O<a;<C, i=1,...,n
i=1

Represent x; in different bases, h(x;), to have non-linear boundary (in x;).

The only change is the objective function

max Z ZZ aiqy;y; h(xi)Th(xj).
i=1j=1

i=1

-l>|l—'
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Kernel trick

@ We can represent the inner-product h(x,-)Th(xJ-) by using
K(xi,x;) = h(x,-)Th(xj), Vi+je{l,...,n}.

The function K is called kernel that quantifies the similarity of two
feature vectors.

@ Regardless how large the space of h(x;) is, all we need to compute is
the pairwise kernel

K(xi,x;), Vi+je{l,...,n}.

This is known as the kernel trick.
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Examples of kernel SVM

@ Linear:

.
K(xj,Xj) = X; X;

with the corresponding h(x;) = x;.
o dth-Degree polynomial:

K(xi,x;) = (1 + x,-ij)d

The corresponding h would be polynomials. For example, consider
d =2, % =x and h(x;) = [1,v2x;, x’], then

2
K(X,’,XJ') = h(X,‘)Th(Xj) =1+ 2X,'XJ' + X,2XJ2 = (]. + X,TXJ') .
@ Radial basis: for some + > 0,
2
K(xi,x;) = eXP(—7||Xi - Xj||2)~

The corresponding h(x;) has infinite dimensions!
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SVMs with More than Two Classes

One-Versus-One: Let C ={1,2,...,K}.
e Construct (g) SVMs for each pair of classes.
» For classes {1,2}, consider data (x;,y;) with y; € {1,2}. Let

zi=-Yy; =1} + Ly; = 2}.
Fit SVM by using (x;,z;) with y; € {1,2}.
» For classes {1,3}, consider data (x;,y;) with y; € {1,3}. Let
zi=-Hy; =1} + Yy, = 3}.
Fit SVM by using (x;,z) with y; € {1, 3}.

» Repeat for all pairs.

@ For each test point Xxg, assign it to the majority class predicted by (’2()
SVMs.
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SVMs with More than Two Classes

One-Versus-All

@ Construct K SVMs by choosing each class one at a time.
» For class {1}, consider ALL data (x;,y;), i =1,...,n. Let

z=2-1{y; =1} - 1.
Fit SVM and let its parameter be (b(l) A(l))
» For class {2}, consider ALL data (x;,y;), i=1,...,n. Let
z=2-1{y;=2}-1.
Fit SVM and let its parameter be (5(2),W(2)).

» Repeat for all classes.

@ For each test point xg, assign it to the class
arg max (B(k) + Xg A(k))
keC
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