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Computation of the hard-margin SVM

Primal-formulation:

min
w,b

∥w∥2
2

s.t. yi(w
⊤

xi + b) ≥ 1 i = 1, . . . , n

Convex, in fact, a quadratic program. (Stochastic) Gradient descent
can be directly used.

In practice, it is more common to solve the optimization problem
based on its dual formulation.
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Dual-formulation of the hard-margin SVM

For αi ≥ 0 for all i = 1, . . . , n, write the Lagrangian function

L(w, b,α) = ∥w∥2
2 +

n

∑
i=1

αi [1 − yi(w
⊤

xi + b)] ,

Taking the derivative w.r.t. w and b yields

w =
1

2

n

∑
i=1

αiyixi ,
n

∑
i=1

αiyi = 0.

Plugging into L(w, b,α) yields

1

4

n

∑
i=1

n

∑
j=1

αiαjyiyjx
⊤
i xj +

n

∑
i=1

αi −
1

2

n

∑
i=1

n

∑
j=1

αiαjyiyjx
⊤
i xj − b∑

i=1

αiyi

=

n

∑
i=1

αi −
1

4

n

∑
i=1

n

∑
j=1

αiαjyiyjx
⊤
i xj .
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Dual-formulation of the hard-margin SVM

The dual problem is

max
α

n

∑
i=1

αi −
1

4

n

∑
i=1

n

∑
j=1

αiαjyiyjx
⊤
i xj

s.t.
n

∑
i=1

αiyi = 0, αi ≥ 0, i = 1, . . . , n.

The K.K.T. conditions ensure the following relationships between the
primal and dual formulations.

Their optimal objective values are equal.

The optimal solutions ŵ and α̂ satisfy

ŵ =
1

2

n

∑
i=1

α̂i yixi ,
α̂i > 0, if yi(ŵ

⊤
xi + b̂) = 1

α̂i = 0, if yi(ŵ
⊤

xi + b̂) > 1
.

The predicted label for any x is

sign(ŵ
⊤

x + b̂).
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Prime-formulation of the soft-margin SVM

Soft-margin SVM is equivalent to, for some C = C(K),

min
w,b,ζ

∥w∥2
2 + C

n

∑
i=1

ζi

s.t. yi(w
⊤

xi + b) ≥ 1 − ζi , ζi ≥ 0, i = 1, . . . , n.

Xin Bing (UofT) STA314-SVM 5 / 11



Dual-formulation of the soft-margin SVM

It can be shown
1

that the dual-formulation of the soft-margin SVM is

max
α

n

∑
i=1

αi −
1

4

n

∑
i=1

n

∑
j=1

αiαjyiyj x
⊤
i xj

s.t.
n

∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . , n.

Here C > 0 is the tuning parameter.

1
Chapter 12.2.1 in ESL.
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Kernel SVM: extension to non-linear boundary

Recall

max
α

n

∑
i=1

αi −
1

4

n

∑
i=1

n

∑
j=1

αiαjyiyj x
⊤
i xj

s.t.
n

∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . , n.

Represent xi in different bases, h(xi), to have non-linear boundary (in xi ).

The only change is the objective function

max
α

n

∑
i=1

αi −
1

4

n

∑
i=1

n

∑
j=1

αiαjyiyj h(xi)⊤h(xj).
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Kernel trick

We can represent the inner-product h(xi)⊤h(xj) by using

K(xi , xj) = h(xi)⊤h(xj), ∀i ≠ j ∈ {1, . . . , n}.

The function K is called kernel that quantifies the similarity of two
feature vectors.

Regardless how large the space of h(xi) is, all we need to compute is
the pairwise kernel

K(xi , xj), ∀i ≠ j ∈ {1, . . . , n}.

This is known as the kernel trick.
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Examples of kernel SVM

Linear:
K(xi , xj) = x

⊤
i xj

with the corresponding h(xi) = xi .

dth-Degree polynomial:

K(xi , xj) = (1 + x
⊤
i xj)

d
.

The corresponding h would be polynomials. For example, consider
d = 2, xi = xi and h(xi) = [1,

√
2xi , x

2
i ], then

K(xi , xj) = h(xi)⊤h(xj) = 1 + 2xixj + x
2
i x

2
j = (1 + x

⊤
i xj)

2
.

Radial basis: for some γ > 0,

K(xi , xj) = exp (−γ∥xi − xj∥2
2) .

The corresponding h(xi) has infinite dimensions!
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SVMs with More than Two Classes

One-Versus-One: Let C = {1, 2, . . . ,K}.

Construct (K
2
) SVMs for each pair of classes.

▶ For classes {1,2}, consider data (xi , yi) with yi ∈ {1, 2}. Let

zi = −1{yi = 1} + 1{yi = 2}.

Fit SVM by using (xi , zi) with yi ∈ {1, 2}.

▶ For classes {1,3}, consider data (xi , yi) with yi ∈ {1, 3}. Let

zi = −1{yi = 1} + 1{yi = 3}.

Fit SVM by using (xi , zi) with yi ∈ {1, 3}.

▶ Repeat for all pairs.

For each test point x0, assign it to the majority class predicted by (K
2
)

SVMs.
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SVMs with More than Two Classes

One-Versus-All

Construct K SVMs by choosing each class one at a time.
▶ For class {1}, consider ALL data (xi , yi), i = 1, . . . , n. Let

zi = 2 ⋅ 1{yi = 1} − 1.

Fit SVM and let its parameter be (b̂(1)
, ŵ

(1)).

▶ For class {2}, consider ALL data (xi , yi), i = 1, . . . , n. Let

zi = 2 ⋅ 1{yi = 2} − 1.

Fit SVM and let its parameter be (b̂(2)
, ŵ

(2)).

▶ Repeat for all classes.

For each test point x0, assign it to the class

arg max
k∈C

(b̂(k)
+ x

⊤
0 ŵ

(k)) .
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