
STA314: Statistical Methods for Machine Learning I

Midterm Exam 2 – LEC0101
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Problem 1 (3 pts)

In this problem we will derive the regression function of a linear spline with
one knot. Let X 2 R be a one-dimensional feature variable and Y 2 R be
the response. To fit a linear spline with one knot at X = x0, we start with
the following piecewise linear regression function

f(X) =

(
↵0 + ↵1X, if X < x0

↵2 + ↵3X, if X � x0
(1)

1. (1 pt) State the requirement of linear splines at the knot X = x0. Derive
its induced constraint on the coe�cients ↵0,↵1,↵2 and ↵3.

SOLUTION: Requires continuity and induces the constraint ↵0 +
↵1x0 = ↵2 + ↵3x0, or

↵2 � ↵0 = (↵1 � ↵3)x0.
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2. (2 pts) Prove that under the constraint you derived in part 1,

f(X) = ↵0 + ↵1X + (↵3 � ↵1)(X � x0)+.

For any a 2 R, we write (a)+ = max{a, 0}.
SOLUTION:

f(X) = ↵01{X < x0}+ ↵1X1{X < x0}+ ↵21{X � x0}+ ↵3X1{X � x0}
= ↵0 + ↵1X + (↵2 � ↵0)1{X � x0}+ (↵3 � ↵1)X1{X � x0}
= ↵0 + ↵1X + (↵3 � ↵1)(X � x0)1{X � x0}

The last step uses part 1.
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Problem 2 (13 points)

Suppose we observe 10 data points (xi, yi) for 1  i  10 as shown below.

1. (1 pt) If we use OLS to fit a linear regression between yi and xi, sketch
the fitted prediction line for all �2.5  x  2.5.

−3 −2 −1 0 1 2 3

−2
0

2
4

x

y

2. (1 pt) If we use OLS to fit a polynomial regression of order 2 between
yi and xi, sketch the fitted prediction line for all �2.5  x  2.5.
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3. (1 pt) If we use OLS to fit a step-wise regression between yi and xi at
the knot x = 1, sketch the fitted prediction line for all �2.5  x  2.5.
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4. (1 pt) If we use OLS to fit a linear spline between yi and xi at the knot
x = 1, sketch the fitted prediction line for all �2.5  x  2.5.
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5. (3 pts) For each pair of the four fitted models above, compare their
training MSEs (e.g., for model 1 vs model 2, your answer should be one
of MSE1 � MSE2, MSE1  MSE2 or “there is not enough information
to tell”.)

SOLUTION:

• model 1 vs model 2: MSE1 � MSE2

• model 1 vs model 3: not able to tell

• model 1 vs model 4: MSE1 � MSE4

• model 2 vs model 3: not able to tell

• model 2 vs model 4: not able to tell

• model 3 vs model 4: MSE3 � MSE4
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6. (3 pts) Indicate in the figure the position of predicted values at x = �1
and x = 0.5 by using K-nearest neighbor with K = 3. Suppose the
solid line is the true regression function. Comment on how you expect
the prediction accuracy at a given point to depend on its neighbors.
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SOLUTION: The closer the neighbors are, the more accurate.
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7. (2 pts) Suppose we have measurement of two features X1 and X2. We
would like to use a generalized additive model (GAM) to predict the
response Y where we use a step-wise basis of X1 with knot x1 = 1 and
a linear spline basis of X2 with knot x2 = 0. State your model.

SOLUTION:

Y = �0 + �11{X1  1}+ �2X2 + �3(X2 � 1)+ + ".

or simply
Y ⇠ 1 + 1{X1  1}+X2 + (X2 � 1)+.

There are other valid basis choices of X1 and X2.

8. (1 pt) State at least two procedures which can be used to fit the above
GAM model.

SOLUTION: Possible options are OLS, ridge and lasso.
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Problem 3 (14 points)

Consider the following 6 data points of two features X = (X1, X2) and a
three-class label Y 2 {0, 1, 2}. Each row corresponds to one data point.

X1 X2 Class Y

-1 1 0

-0.5 2 0

0 3 1

0.5 2 1

1 0 2

1.5 0.5 2

Suppose we aim to train a multi-class logistic regression classifier with Class
0 chosen as the baseline, that is, for any x = (x1, x2), we assume

log
P(Y = 1 | X = x)

P(Y = 0 | X = x)
= �(1)

0 + �(1)
1 x1 + �(1)

2 x2,

log
P(Y = 2 | X = x)

P(Y = 0 | X = x)
= �(2)

0 + �(2)
1 x1 + �(2)

2 x2.

Here �(1) = (�(1)
0 , �(1)

1 , �(1)
2 ) 2 R3 and �(2) = (�(2)

0 , �(2)
1 , �(2)

2 ) 2 R3 are the
unknown coe�cients.
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1. (3 pts) Derive the expression of P(Y = k | X = x) for all k 2 {0, 1, 2}
in terms of �(1), �(2) and x.

SOLUTION:

P(Y = 0 | X = x) =
1

1 + e�
(1)
0 +�(1)

1 x1+�(1)
2 x2 + e�

(2)
0 +�(2)

1 x1+�(2)
2 x2

P(Y = 1 | X = x) =
e�

(1)
0 +�(1)

1 x1+�(1)
2 x2

1 + e�
(1)
0 +�(1)

1 x1+�(1)
2 x2 + e�

(2)
0 +�(2)

1 x1+�(2)
2 x2

P(Y = 2 | X = x) =
e�

(2)
0 +�(2)

1 x1+�(2)
2 x2

1 + e�
(1)
0 +�(1)

1 x1+�(1)
2 x2 + e�

(2)
0 +�(2)

1 x1+�(2)
2 x2
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2. (2 pts) The MLE can be used to estimate the coe�cients �(1) and �(2),
and is defined as

b�(1), b�(2) = argmax
�(1),�(2)

`(�(1),�(2)).

Here `(�(1),�(2)) is the log-likelihood function. In practice, people also
consider the following regularized estimator

argmax
�(1),�(2)

⇢
`(�(1),�(2))� �

⇣
�(1)
1

⌘2
+
⇣
�(1)
2

⌘2
+
⇣
�(2)
1

⌘2
+
⇣
�(2)
2

⌘2��

where � > 0 is some regularization parameter.

Explain the e↵ect of regularization, specifically, how would you expect
� to a↵ect the resulting estimator, as well as the model complexity?

SOLUTION: For larger �, the magnitude of the estimated coe�cients
get smaller, the model complexity gets reduced.
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3. (3 pts) Suppose we use the following estimates of �(1) = (�(1)
0 , �(1)

1 , �(1)
2 )

and �(2) = (�(2)
0 , �(2)

1 , �(2)
2 ):

b�(1) = (1, 1,�1), b�(2) = (�1, 1, 1). (2)

State the interpretation of both b�(1)
1 and b�(2)

1 . Compute the predicted
probabilities for each label class for the observation x = (1, 0).

(Your answer may contain terms such as e, e�1, e2, e�2, . . .)

SOLUTION: For any unit increment of x1 with the value of x2 fixed,
b�(1)
1 represents the change in the log odds of P(Y = 1 | X = x) relative

to P(Y = 0 | X = x) while b�(2)
1 represents the change in the log odds

of P(Y = 2 | X = x) relative to P(Y = 0 | X = x).

The predicted probabilities are

P(Y = 0 | X = x) =
1

2 + e2

P(Y = 1 | X = x) =
e2

2 + e2

P(Y = 2 | X = x) =
1

2 + e2
.
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4. (1 pt) By using the estimates in equation (2), draw the line in a 2-
dimensional space (with x-axis indicating the value of X1 and y-axis
indicating the value of X2) such that bp1(x) := P(Y = 1 | X = x) <
bp0(x) := bP(Y = 0 | X = x) on one side and bp1(x) > bp0(x) on the other
side. E.g.

Give the mathematical expression of this line and indicate which class
has larger probability on each side.
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5. (1 pt) Repeat the previous part between bp2(x) := bP(Y = 2 | X = x) and
bp0(x). (Draw the line, state its mathematical expression and indicate
which class has larger probability on each side)
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6. (1 pt) Based on the previous two questions, indicate the areas in which
the predicted label is Class 0. Similarly, indicate the other two areas
where the predicted labels are Class 1 and 2, respectively.
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7. (3 pts) State the predicted labels for each of the training data points
(you can either base on the figure in previous part or do the computation
directly). Calculate the training error rate.
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Problem 4 (10 points)

Multinomial logit model (MLM) is another popular model for multi-class
classification problem. Imagine a study where individuals are asked to choose
their preferred product among a list of (K + 1) items. For each product, we
have measurement of its attributes. Here we only consider one attribute, such
as price. The prices of each product are x0, x1, . . . , xK . The MLM assumes
that the customer makes their choice Y according to

log
P(Y = k)

P(Y = 0)
= �⇤

0 + �⇤
1xk, k 2 {1, . . . , K}.

Product 0 is chosen as the baseline. We write Y = k if the customer choo-
ses product k. The unknown coe�cients �⇤

0 and �⇤
1 represent the customer’s

“taste” on price. Suppose we observe n i.i.d. choices y1, . . . , yn of a chosen
customer according to the above model.
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1. (2 pts) Show that

P(Y = 0) =
1

1 +
PK

k=1 e
�⇤
0+�⇤

1xk

P(Y = k) =
e�

⇤
0+�⇤

1xk

1 +
PK

k=1 e
�⇤
0+�⇤

1xk

, for all k 2 {1, . . . , K}.

SOLUTION: By definition, for all 1  k  K,

P(Y = k) = e�
⇤
0+�⇤

1xkP(Y = 0).

Since

1 =
KX

k=1

P(Y = k) + P(Y = 0) = P(Y = 0)
�
e�

⇤
0+�⇤

1xk + 1
�
,

we have

P(Y = 0) =
1

1 + e�
⇤
0+�⇤

1xk
.

The other claim follows immediately.
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2. (3 pts) Let

nk =
nX

i=1

1{yi = k}, for all k 2 {0, 1, . . . , K}.

Prove that the log-likelihood function at any (�0, �1) is

`(�0, �1) =
KX

k=1

nk(�0 + �1xk)� n log

 
1 +

KX

k=1

e�0+�1xk

!
. (3)

SOLUTION: The likelihood of y1 is

L(�0, �1; y1) =
KY

k=0

P(y1 = k)1{yi=k}

so that the log-likelihood of y1, . . . , yn is

`(�0, �1)

=
nX

i=1

KX

k=0

1{yi = k} log [P(y1 = k)]

=
nX

i=1

1{yi = 0}
"
� log

 
1 +

KX

k=1

exp(�0 + �1xk)

!#

+
nX

i=1

KX

k=1

1{yi = k}
"
�0 + �1xk � log

 
1 +

KX

k=1

exp(�0 + �1xk)

!#

=
KX

k=1

nk(�0 + �1xk)� n log

 
1 +

KX

k=1

exp(�0 + �1xk)

!
.
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(You may use this blank page to continue your answer.)
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3. (2 pts) Suppose we know �⇤
0 = 0 and we only maximize the log-

likelihood function `(�1) := `(�0 = 0, �1) in (3) over �1 2 R to compute

the MLE of �⇤
1 . Starting from a given initialization b�(0)

1 with a given
step size ↵, state the gradient descent iterates for computing the MLE
of �⇤

1 . (You need to derive the expression of gradient)

SOLUTION: Write

p0(�0, �1) =
1

1 +
PK

k=1 e
�0+�1xk

pk(�0, �1) =
e�0+�1xk

1 +
PK

k=1 e
�0+�1xk

, k 2 {1, . . . , K}.

Since

@`(�0, �1)

@�1
=

KX

k=1

nkxk � n

PK
k=1 e

�0+�1xk xk

1 +
PK

k=1 e
�0+�1xk

=
KX

k=1

[nk � n pk(�0, �1)] xk,

the GD of b�(t)
1 follows as

b�(t+1)
1 = b�1 � ↵

KX

k=1

h
nk � n pk(0, b�(t)

1 )
i
xk.

Specifically,

pk(0, b�(t)
1 ) =

e�1xk

1 +
PK

k=1 e
�1xk

.

21



(You may use this blank page to continue your answer.)
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4. (3 pts) Suppose K = 1. Prove that the negative log-likelihood, �`(�1),
in the previous subquestion is a convex function of �1. Reason whether
or not the MLE of �1 can be computed via the gradient descent you
derived above with a suitable step size.
(Recall that a function f : R ! R is said to be convex if f(�x + (1 �
�)y)  �f(x)+(1��)f(x) for all x, y 2 R and all � 2 [0, 1]. A su�cient
condition of f(x) being convex is f 00(x) � 0 for all x.)

SOLUTION: From previous part,

�@2`(�0, �1)

@�2
1

= n

8
<

:

PK
k=1 x

2
ke

�0+�1xk

1 +
PK

k=1 e
�0+�1xk

�
 PK

k=1 xke
�0+�1xk

1 +
PK

k=1 e
�0+�1xk

!2
9
=

; .

For K = 1 and �0 = 0, it gets simplified to

n

(1 + e�1x1)2
⇥
x21e

�1x1
�
1 + e�1x1

�
� (x1e

�1x1)2
⇤
= n

x21e
�1x1

(1 + e�1x1)2
� 0.

Therefore, we know that

�@2`(�0, �1)

@�2
1

� 0

for all �0 and �1, hence �`(�1) is convex.

As a result of the convexity of �`(�1), since the minimization is over
�1 2 R which is a convex space, GD with a suitable stepsize guarantees
to find the MLE.
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(You may use this blank page to continue your answer.)
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5. (Bonus: 2 pts) Can you extend the result of the previous subquestion
to K � 2?
Hint: for any two sequences {a1, . . . , an} and {b1, . . . , bn}, the Cauchy
Schwarz inequality states that

 
nX

i=1

aibi

!2


 

nX

i=1

a2i

! 
nX

i=1

b2i

!
.

SOLUTION: For general K � 2, we have the claim by noting that

 
1 +

KX

k=1

e�0+�1xk

!
KX

k=1

x2ke
�0+�1xk

�
 

KX

k=1

e�0+�1xk

! 
KX

k=1

x2ke
�0+�1xk

!
�
 

KX

k=1

xke
�0+�1xk

!2

.

The last step uses the Cauchy Schwarz inequality.
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Problem 5 (10 points, 1 point for each subquestion)

Be sure to mark your answers on the Scantron Sheet of multiple choice
questions. There is only one correct answer to each question.

1. Which of the following statement is true

A The Bayes classifier always has the smallest training error rate among
all possible classifiers.

B The Bayes classifier can not have zero training error rate.

C The Bayes classifier always has the smallest false negative rate on the
test data among all possible classifiers.

D When Y has three categories (e.g., Y 2 {1, 2, 3}), the Bayes error rate
at any given feature point X = x can not exceed 2/3.

SOLUTION: D

2. Which of the following statements about splines is not true?

A A spline is a piecewise polynomial function of the original features.

B Cubic splines with specified knots belong to the class of linear models
(linearity in the parameters)

C Splines can only be used when the original feature is one-dimensional.

D Natural cubic splines has fewer parameters to estimate than cubic spli-
nes.

SOLUTION: C
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3. Which of the following statement is not true

A Logistic regression is a parametric classification approach.

B The maximum likelihood estimator (MLE) of the coe�cients under
logistic regression does not have an explicit expression.

C The MLE under logistic regression can be computed by gradient de-
scent with a suitable step size.

D Logistic regression cannot be used when the response label has more
than two classes.

SOLUTION: D

4. Which of the following statements about gradient descent (GD) is true?

A GD guarantees convergence to the global minimum for all types of
objective functions.

B GD is only applicable when the objective function is convex .

C GD is only applicable when the objective function is di↵erentiable.

D In stochastic GD, the single data point used to compute the gradient
must be distinct across iterations.

SOLUTION: C
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5. Which of the following statements is not true regarding Generalized Ad-
ditive Models (GAMs)?

A GAMs allow for the inclusion of non-linear functions of the original
features.

B GAMs can be used to model the interaction between the original fea-
tures.

C GAMs do not su↵er from the curse of dimensionality.

D GAMs can handle both continuous and categorical features.

SOLUTION: B

6. Which of the following statement is not true

A K-nearest neighbour (NN) is a nonparametric approach.

B K-NN method has a large bias when K is small.

C K-NN method does not require model-fitting.

D K-NN method su↵ers from the curse of dimensionality.

SOLUTION: B

7. Which of the following statements about the step size (learning rate) in
gradient descent is true?

A A larger step size always leads to faster convergence to the minimum.

B A too small step size causes the algorithm to converge very slowly.

C A too small step size leads to overfitting.

D Using the training data to choose the step size leads to overfitting.

SOLUTION: B
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8. Which of the following approaches cannot be used to fit cubic splines

A The ordinary least squares (OLS) estimation.

B The ridge estimation.

C The OLS followed by subset selection.

D The maximum likelihood estimation.

SOLUTION: D

9. In the following plot, we compare two classification methods (called Test
A and Test B) based on their ROC curves on the training data. Which of
the following statement is true?

A Test A has lower training error rate than Test B.

B Test A has higher training error rate than Test B.

C Test A has lower test error rate than B.

D Test A is a more complex classifier than Test B.

SOLUTION: A
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10. Which of the following statement is true between two classifiers

A The classifier with lower false negative rate (FNR) must have higher
false positive rate (FPR) comparing to the other.

B The classifier with higher FNR must have larger misclassification error
rate comparing to the other.

C The classifier with both lower FNR and lower FPR does not necessarily
have smaller misclassification error rate comparing to the other.

D The classifier with lower FNR is less likely to misclassify positive data
points as negative.

SOLUTION: D
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