
STA314: Statistical Methods for Machine Learning I

Midterm Exam – LEC0201
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Problem 1 (6 pts)

Let (yi,xi), for 1 ≤ i ≤ n, be the training data points where yi ∈ R is the
response and xi = (xi1, xi2, xi3) ∈ R3 contains measurements of three features.

Throughout the exam, let us ignore the intercept term for fitting any model.

(a) (1 pt) Write down the form of linear predictor, fitted by the Ordinary
Least Squares (OLS) approach, using all three features. (You need to

specify how the coefficients are obtained.) Denote this predictor by f̂1.

SOLUTION: For any given data point x∗ = (x∗1, x
∗
2, x
∗
3), we have

f̂1(x
∗) =

3∑
i=1

x∗i β̂i

where the estimated coefficients are obtained from

β̂ = arg min
β=(β1,β2,β3)

n∑
i=1

(
yi − x>i β

)2
.

(b) (1 pt) For any unit increment in the first feature, state how the predicted

outcome of f̂1 changes.

SOLUTION: Change by β̂1.
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(c) (1 pt) In the case there is a prior belief that the first feature also affects
the response quadratically. Write down the form of linear predictor,
fitted by OLS, using four features (xi1, xi2, xi3, x

2
i1). (Specify how the

coefficients are obtained.) Denote this predictor by f̂2.

SOLUTION: For any given data point x∗ = (x∗1, x
∗
2, x
∗
3)
>, we have

f̂2(x
∗) =

3∑
i=1

x∗i α̂i + x∗21 α̂4

where

α̂ = arg min
α=(α1,...,α4)

n∑
i=1

(
yi − xi1α1 − xi2α2 − xi3α3 − x2i1α4

)2
.

(d) (1 pt) For any unit increment in the first feature, state how the predicted

outcome of f̂2 changes.

SOLUTION: Change by α̂1 + (2x∗1 + 1)α̂4 at x∗ = (x∗1, x
∗
2, x
∗
3).
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(e) (2 pts) Can you tell which f̂1 and f̂2 has smaller training Mean Squared
Error (MSE)? Give your reasoning.

SOLUTION: f̂2 has smaller training MSE. By the optimality of the
OLS solution, we have

n∑
i=1

(
yi − xi1α̂1 − xi2α̂2 − xi3α̂3 − x2i1α̂4

)2
≤

n∑
i=1

(
yi − xi1α1 − xi2α2 − xi3α3 − x2i1α4

)2
for any (α1, α2, α3, α4). The left-hand-side (LHS) is the training MSE

of f̂2. In particular, by taking (α1, α2, α3, α4) = (β̂1, β̂2, β̂3, 0), the RHS

becomes the training MSE of f̂1, concluding the claim.
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Problem 2 (5 pts)

Consider the same settings in Problem 1 as well as the predictors f̂1 in part
(a) and f̂2 in part (c). Suppose (yi,xi) are i.i.d. realizations of (Y,X) with
X = (X1, X2, X3), which satisfy the following model

Y = 3X1 + 5X2 + ε. (1)

(a) (1 pt) Is the predictor f̂1 unbiased at any given test data point x∗ =
(x∗1, x

∗
2, x
∗
3)? If so, prove it. Otherwise, state your reasoning. (You may

use the fact that the OLS estimators are unbiased without proving it.)

SOLUTION: Unbiased, because

E[f̂1(x
∗)] = x∗1E[β̂1] + x∗2E[β̂2] + x∗2E[β̂3]

= x∗1E[β1] + x∗2E[β2] + x∗3 · 0
= 3x∗1 + 5x∗2

which is the true function value at x∗.

(b) (1 pt) Can you tell which f̂1 and f̂2 has smaller test MSE under the
model in Eq. (1)? Give your reasoning.

SOLUTION: f̂1. Both are unbiased but f̂1 has smaller variance because
it uses one less feature.
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(c) (2 pts) Consider using the backward stepwise selection to select a subset
from (X1, X2, X3, X

2
1) for prediction. If the excluded feature is X3 after

the first step, write down all the candidate predictors considered in the
second step. (You may write Y ∼ X1 + X2 + X3 + X2

1 for a predictor
that uses all four features or Y ∼ 0 for no feature.)

SOLUTION: The candidate predictors considered in the second step
are

Y ∼ X1 +X2 Y ∼ X1 +X2
1 Y ∼ X2 +X2

1

(d) (1 pt) Indicate which feature you would expect to be excluded after the
second step in part (c), and explain.

SOLUTION: We expect X2
1 to be excluded as the true model is the

first one.
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Problem 3 (9 pts)

In a regression problem, assume that the true model is

Y = X2 +X3 +X2
3 + ε,

where ε is a random noise. Suppose we fit the following two fitted models by
using the training data containing n realizations of (Y,X1, X2, X3)

(M1) Y ∼ X2 +X3 +X2
3 ,

(M2) Y ∼ X1 +X2 +X3 +X2
1 +X2

2 +X2
3 .

Here the notation Y ∼ X + X ′ means to regress Y onto X and X ′ via the
OLS approach. For each fitted model, we can construct an estimator of the
regression function, denoted by f̂i for i ∈ {1, 2}.

(a) (3 pts) Describe how to use 2-fold cross-validation (CV) to estimate the

expected MSE of f̂1.

SOLUTION: Key words include:

• Random split (50/50)

• Fit the model on training and compute validation MSE

• Swap and compute the averaged validation MSEs
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(b) (2 pts) Let M̂SE2(f̂1) be the estimate of the expected MSE of f̂1 ob-
tained from 2-fold CV. Do you expect to obtain the same value of

M̂SE2(f̂1) if running 2-fold CV multiple times? If yes, explain why.
Otherwise, describe how to understand the different values.

SOLUTION: We will have different values. They are all estimates of
the true MSE(f̂1). Their average is close to MSE(f̂1).

(c) (2 pts) Let M̂SEk(f̂1) be the estimate of the expected MSE of f̂1 obtai-
ned by k-fold CV. Comment on the role of k.

SOLUTION: The larger k is , the more accurately M̂SEk(f̂1) estimates

MSE(f̂1). However, the computation cost becomes higher for large k.
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(d) (1 pt) Between M̂SEn(f̂1) and M̂SEn(f̂2), which one do you expect to
be smaller? State your reasoning.

SOLUTION: M̂SEn(f̂1) should be smaller as M1 corresponds to the
true model.

(e) (1 pt) Suppose we first sort the n data points according to their response
values in non-decreasing order, and then perform n-fold CV to obtain

M̂SEn(f̂1) and M̂SEn(f̂2). Would you expect the same conclusion as in
part (d)?

SOLUTION: LOOCV does not change as we shuffle the data.
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Problem 4 (3 pts)

Suppose we have the data (yi,xi) for 1 ≤ i ≤ n with xi ∈ Rp and yi ∈ R. Let

β̂ be the estimated coefficients by regressing (y1, . . . , yn) onto (x1, . . . ,xn) via

OLS. For any given λ > 0, let β̂L
λ be the estimated coefficients by regressing

(y1, . . . , yn) onto (x1, . . . ,xn) via the lasso.

Denote by RSS(β̂) the residual sum of squares (RSS) of the linear predictor

that uses β̂. Similarly, we write RSS(β̂L
λ ).

(a) (1 pt) Show that

RSS(β̂) ≤ RSS(β̂L
λ ).

SOLUTION: Note that

RSS(β̂) =
n∑
i=1

(
yi − x>i β̂

)2
, RSS(β̂L

λ ) =
n∑
i=1

(
yi − x>i β̂

L
λ

)2
The claim follows by the optimality of β̂, that is, RSS(β̂) ≤ RSS(β)

for any β ∈ Rp, in particular, for β = β̂L
λ .
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(b) (2 pts) Prove that, for all λ > 0,

‖β̂L
λ‖1 ≤ ‖β̂‖1.

(For a vector v ∈ Rp, we write ‖v‖1 =
∑p

j=1 |vj|.)
SOLUTION: Since

β̂L
λ = arg min

β
RSS(β) + λ‖β‖1,

we have
RSS(β̂L

λ ) + λ‖β̂L
λ‖1 ≤ RSS(β̂) + λ‖β̂‖1.

Rearranging terms gives

λ
(
‖β̂L

λ‖1 − ‖β̂‖1
)
≤ RSS(β̂)− RSS(β̂L

λ )

≤ 0 by part (a).

Since λ > 0, the claim follows.
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Problem 5 (7 pts)

In the following problem we will see the benefit of shrinking a given unbiased
estimator.
Let β̂ be an unbiased estimator of β ∈ R and suppose that Var(β̂) = σ2 for

some σ2 > 0. For a given λ ≥ 0, define the shrinkage version of β̂ as

β̂λ :=
β̂

1 + λ
.

Denote the expected MSE of β̂ by MSE(β̂) := E[(β̂ − β)2] and similarly,

MSE(β̂λ) := E[(β̂λ − β)2].

(a) (1 pt) For any estimator β̃ of β, prove that

MSE(β̃) = Var(β̃) +
(
E[β̃]− β

)2
.

(You may assume the first two moments of β̃ exist.)

SOLUTION:

MSE(β̃) = E[(β̃ − β)2]

= E
[(
β̃ − E[β̃] + E[β̃]− β

)2]
= E

[(
β̃ − E[β̃]

)2]
+ E

[(
E[β̃]− β

)2]
+ 2E

[(
β̃ − E[β̃]

)(
E[β̃]− β

)]
= E

[(
β̃ − E[β̃]

)2]
+
(
E[β̃]− β

)2
.

By definition, the first term is Var(β̃).
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(b) (2 pts) Use part (a) to deduce the expressions of MSE(β̂) and MSE(β̂λ).

SOLUTION: By part (a), we have

MSE(β̂) = Var(β̂) +
(
E[β̂]− β

)2
= σ2

and

MSE(β̂λ) = Var(β̂λ) +
(
E[β̂λ]− β

)2
=

Var(β̂)

(1 + λ)2
+

(
1

1 + λ
E[β̂]− β

)2

=
σ2

(1 + λ)2
+

λ2β2

(1 + λ)2
.

(c) (1 pt) Comment on the effect of λ.

SOLUTION: For larger λ, the bias of β̂λ gets larger while the variance
gets smaller.
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(d) (3 pts) Find the best λ that minimizes MSE(β̂λ) and its corresponding

MSE(β̂λ). Comment on the choice of the best λ and compare the best

MSE(β̂λ) with MSE(β̂).

SOLUTION: Minimizing MSE(β̂λ) over λ ≥ 0 gives that

λ∗ =
σ2

β2

and the corresponding mimimal MSE

MSE(β̂λ∗) =
σ2β2

β2 + σ2
.

Fix σ2. The smaller β is, the larger λ∗ becomes, while for fixed β, λ∗

gets larger as σ2 increases.

Clearly,

MSE(β̂)−MSE(β̂λ∗) = σ2
σ2

β2 + σ2
≥ 0

and the difference becomes larger as β2 gets smaller or σ2 gets larger.
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Problem 6 (10 pts, 1 pt for each subquestion)

Be sure to mark your answers on the answer sheet of multiple choice questi-
ons. There can be one to four correct answers to each question. One point
is assigned to a multiple choice question if and only if all correct answers to
this question are checked and no incorrect answer to this question is checked.

1. Which of the following statements about model evaluation are true?

A The training MSE is always higher than the test MSE.

B AIC/BIC cannot be used to estimate the expected MSE of a parametric
model.

C Overfitting occurs when the model is too simple.

D A high training error suggests to use more complex model for predic-
tion.

SOLUTION: BD

2. Which of the following statements about regression are true?

A The coefficients in a multiple linear regression model indicate the effect
of one predictor while holding others constant.

B Multicollinearity can lead to unstable estimates of regression coeffi-
cients.

C Adding more predictors to a model will always improve its prediction
performance.

D The R-squared value quantifies the goodness of fit to the training data.

SOLUTION: ABD
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3. Regarding regularization techniques in regression, which of the following
statements are true?

A Lasso regression can shrink estimated coefficients to exactly zero.

B Ridge regression can be used for feature selection.

C Regularization does not prevent overfitting.

D Ridge has better prediction performance than lasso when the true re-
gression coefficients are non-sparse

SOLUTION: AD

4. Which of the following statements regarding model selection criteria are
true?

A AIC adjusted the RSS by additively penalizing the number of parame-
ters.

B BIC typically results in more complex models compared to AIC.

C Cross-validation requires more sample size than AIC and BIC.

D Lower values of AIC and BIC indicate a better fitted model.

SOLUTION: ACD

5. Which of the following statements are true

A Best subset selection is guaranteed to find the best model.

B Forward stepwise selection is a greedy approach.

C Backward stepwise selection considers the same set of models as the
forward stepwise selection.

D Forward stepwise selection has a chance to find the best model.

SOLUTION: ABD
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6. Which of the following statements are true

A Image object detection is a supervised learning problem.

B Regression problems belong to supervised learning while classification
problems belong to unsupervised learning.

C k-nearest neighbor regression is an example of non-parametric method
for estimating the regression function.

D Shrinkage regression is an example of parametric method.

SOLUTION: ACD

7. Which of the following statements are true

A Ridge can yield a smaller training MSE than the OLS estimator.

B Ridge estimator has smaller variance than the OLS estimator.

C Ridge can outperform Lasso in terms of prediction.

D Ridge with a selected regularization parameter is computationally much
more expensive than the OLS estimator.

SOLUTION: BC

8. In which case, we usually prefer nonparametric approaches rather than
linear approaches

A When the number of features is large.

B When the sample size is large.

C When the data has little noise.

D When we want to model the trend between the features and the re-
sponse.

SOLUTION: BC
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9. Which of the following statements about local regression are true?

A A smaller size of the neighborhood usually yields a more flexible fitted
model.

B A smaller size of the neighborhood usually yields a fitted model with
smaller test MSE.

C Choosing the neighborhood size is a model selection problem.

D Local regression method can only be used when the number of features
is small.

SOLUTION: ACD

10. Which of the following statements are true?

A OLS can be used to fit polynomial regression

B Step function approach needs to specify cutoff points

C The fitted step function is piecewise constant

D Linear splines are piecewise continuous linear functions

SOLUTION: ABCD
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