
STA314 Fall 2024 Problem set 4

Problem set 4

• Problem 1 (6 pts)
In this question, you will derive the maximum likelihood estimates for the Gaussian Näıve
Bayes classifier in which a random discrete class label Y ∈ [K] := {1, 2, . . . ,K} and a random
feature X ∈ Rp satisfy

P(Y = k) = πk, X | Y = k ∼ Np(µk,Σk), ∀k ∈ [K]. (0.1)

Here π1, . . . , πK are the priors of the class label Y , and conditioning on Y = k for any k ∈ [K],
the feature vector X ∈ Rp has a p-dimensional Gaussian density with mean µk ∈ Rp and a
diagonal covariance matrix

µk =

µk1
...
µkp

, Σk =


σ2
k1 0 · · · 0
0 σ2

k2 · · · 0
. . .

0 0 · · · σ2
kp

.

Let (y1,x1), . . . , (yn,xn) be n i.i.d. realizations of (Y,X).

1. (3 pts) Write down the log-likelihood function of (y1,x1), . . . , (yn,xn).
Hint: Let Z be a categorical variable taking values from {1, . . . ,K} with corresponding
probabilities θ1, . . . , θK with θk ≥ 0 and

∑
k θk = 1. Its probability mass function at any

Z = z is

P(Z = z) =

K∏
k=1

θ
1{z=k}
k .

SOLUTION: Let θ = (π1, . . . , πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK). Write fk(x) as the p.d.f.
of N(µk,Σk) for k ∈ [K], that is,

fk(x) =
1

(2π)p/2|Σk|1/2
exp

{
−1

2
(x− µk)>Σ−1

k (x− µk)
}

=
1

(2π)p/2(
∏p
j=1 σ

2
kj)

1/2
exp

−
p∑
j=1

1

2σ2
kj

(xj − µkj)2

.
The second line uses the diagonal structure of Σk. For (y1,x1), its likelihood is

L(θ) =

K∏
k=1

[πkfk(x1)]1{yi=k}
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Using the previous equation, the joint log-likelihood of (y1,x1), . . . , (yn,xn) is

`(θ) =
n∑
i=1

K∑
k=1

1{yi = k}[log(πk) + log fk(xi)]

=

n∑
i=1

K∑
k=1

1{yi = k}

log(πk)−
p

2
log(2π)− 1

2

p∑
j=1

log(σ2
kj)−

p∑
j=1

1

2σ2
kj

(xij − µkj)2


= −nKp

2
log(2π) +

n∑
i=1

K−1∑
k=1

1{yi = k}

log(πk)−
1

2

p∑
j=1

log(σ2
kj)−

p∑
j=1

1

2σ2
kj

(xij − µkj)2


+

n∑
i=1

1{yi = K}

log

(
1−

K−1∑
k=1

πk

)
− 1

2

p∑
j=1

log(σ2
Kj)−

p∑
j=1

1

2σ2
Kj

(xij − µKj)2

.
2. (3 pts) Derive the maximum likelihood estimators of πk, µk and Σk for all k ∈ [K].

You may assume
∑n

i=1 1{yi = k} > 0 for all k ∈ [K].

SOLUTION: Pick any k ∈ [K] and j ∈ [p]. Taking the partial derivative w.r.t. µkj and
σ2
kj gives

∂`(θ)

∂µkj
=

n∑
i=1

1{yi = k}
σ2
kj

(xij − µkj),

∂`(θ)

∂σ2
kj

=
n∑
i=1

1{yi = k}

[
− 1

2σ2
kj

+
1

2σ4
kj

(xij − µkj)2

]
.

Letting the above equal to zero and solving for µ̂kj and σ̂2
kj give

µ̂kj =
1

nk

n∑
i=1

1{yi = k}xij , nk =
n∑
i=1

1{yi = k};

σ̂2
kj =

1

nk

n∑
i=1

1{yi = k}(xij − µ̂kj)2.

Furthermore, taking the partial derivative w.r.t. πa, for 1 ≤ a ≤ K − 1, gives

∂`(θ)

∂πa
=

n∑
i=1

1{yi = a}
πa

−
n∑
i=1

1{yi = K}
1−

∑K−1
k=1 πk

=
na
πa
− nK

1−
∑K−1

k=1 πk

where nk =
∑n

i=1 1{yi = k} for each k ∈ [K]. The MLEs of π1, . . . , πK−1 satisfy

na

(
1−

K−1∑
k=1

π̂k

)
= nK π̂a, ∀ 1 ≤ a ≤ K − 1. (0.2)

Summing over 1 ≤ a ≤ K − 1 yields

K−1∑
a=1

na

(
1−

K−1∑
k=1

π̂k

)
= nK

K−1∑
a=1

π̂a ⇔ (n− nK)

(
1−

K−1∑
k=1

π̂k

)
= nK

K−1∑
k=1

π̂k.
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Hence
K−1∑
k=1

π̂k =
n− nK
n

.

Plugging into (0.2) further gives

π̂a =
na
n
, ∀ 1 ≤ a ≤ K − 1,

completing the proof.
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• Problem 2 (14 pts)
For this question you will build classifiers to label images of handwritten digits. Each image
is 8 by 8 pixels and is represented as a vector of dimension 64 by listing all the pixel values
in raster scan order. The images are grayscale and the pixel values are between 0 and
1. The labels y are {0, 1, 2, . . . , 9} corresponding to which character was written in the
image. There are 700 training points and 400 test points for each digit; they can be found in
digits train.txt and digits test.txt. These data sets can be loaded by using the helper
function in utils.R. For example,

source("Q2_starter/utils.R")

data_train <- Load_data("Q2_starter/data/digits_train.txt")

x_train <- train$x

y_train <- train$y

The first 10 digits are shown in Figure 1 (the code for visualizing the dataset is located at
utils.py in case you want to play with it).

Figure 1: The first 10 digits in the training data set

You will implement linear discriminant analysis (LDA), quadratic discriminant analysis (QDA)
and the Gaussian Näıve Bayes (NB) in Problem 1 to classify these digits. Recall that condi-
tioning on each class k ∈ {0, 1, . . . , 9}, the feature X | Y = k follows a multivariate Gaussian
distribution, that is, the p.d.f. of X = x | Y = k is

fk(x) = (2π)−p/2|Σk|−1/2 exp

{
−1

2
(x− µk)>Σ−1

k (x− µk)
}

(0.3)

where µk ∈ Rp is the conditional mean and Σk ∈ Rp×p is the conditional covariance matrix.
For LDA, Σk is assumed to be the same across classes. The priors are

πk = P(Y = k), for all k ∈ {0, 1, . . . , 9}.

You will compute the maximum likelihood estimators of the priors πk, the conditional means
µk and the conditional covariance matrices Σk for k ∈ {0, 1, . . . , 9}, and use the estimators
to construct classifiers.

Read carefully the structure of discriminant_analysis.R. Include your code for all sub-
questions.
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1. (4 pts) Complete the functions Comp_priors, Comp_cond_means and Comp_cond_covs

in the file discriminant analysis.R.

2. (2 pts) Complete the functions Predict_posterior and Predict_labels in the file
discriminant analysis.R.

3. (2 pts) Use LDA to classify the test data by completing part a in Q2 starter.R. Report
the misclassification error of LDA.

4. (2 pts) Use QDA to classify the test data by completing part b in Q2 starter.R. Report
the misclassification error of QDA.

5. (2 pts) Use NB to classify the test data by completing part c in Q2 starter.R. Report
the misclassification error of NB.

6. (2 pts) Complete part d in Q2 starter.R, i.e. perform LDA and QDA by using the
built-in lda and qda functions and compare with your implementation in terms of both
misclassification rates and computational speed.
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• Problem 3 (20 pts)
In this problem, you will implement logistic regression by completing the provided code in
penalized logistic regression.R & Q3 starter.R and experiment with the completed
code.

Throughout this problem, you will be working with a subset of hand-written digits, 2’s and
3’s, represented as 16× 16 pixel arrays. The pixel intensities are between 0 and 1, and were
read into the vectors in a raster-scan manner. You are given one training set: train which
contains 300 examples of each class. You can access and load this training set by using
functions

source("Q3_starter/utils.R")

data_train <- Load_data("Q3_starter/data/train.csv")

x_train <- train$x

y_train <- train$y

y_train contains the labels of these 300 images while x_train are the 256 pixel values of
each image. You are also given a validation set that you should use for tuning and a test set
that you should use for reporting the final performance.

You need to implement the penalized logistic regression model by minimizing the cost

J (β, β0) := − 1

n

n∑
i=1

{
yi log

[
p(xi;β, β0)

]
+ (1− yi) log

[
1− p(xi;β, β0)

]}
+
λ

2
‖β‖22

over (β, β0) ∈ (Rp,R), where

p(xi;β, β0) =
eβ0+x>

i β

1 + eβ0+x>
i β
.

Here n is the total number of data points, p is the number of features in xi, λ ≥ 0 is the
regularization parameter, and β and β0 are the parameters to optimize over. Note that we
should only penalize the coefficient parameters β and not the intercept term β0.

1. (2 pts) Prove that the gradients of J (β, β0) at any (β̄, β̄0) have the following expression,

∂J (β, β0)

∂β

∣∣∣
β̄,β̄0

=
1

n

n∑
i=1

[
−yi +

eβ̄0+x>
i β̄

1 + eβ̄0+x>
i β̄

]
xi + λβ̄,

∂J (β, β0)

∂β0

∣∣∣
β̄,β̄0

=
1

n

n∑
i=1

[
−yi +

eβ̄0+x>
i β̄

1 + eβ̄0+x>
i β̄

]
.

2. (3 pts) Implement the functions Evaluate, Predict logis, Comp gradient and Comp loss

located at penalized logistic regression.R. While implementing the functions, re-
member to vectorize the operations (use vector / matrix operations such as addition
and different multiplications); you should not have any for-loops in these functions.
Include your code in the report.

Important note: carefully read the provided code in penalized logistic regression.R.
You should understand the code and its structure instead of using it as a black box!
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3. (2 pts) Complete the missing parts in function Penalized Logistic Reg located at
penalized logistic regression.R. This function should train the penalized logistic
regression model using gradient descent on given training set. You may use the imple-
mented functions from step 2. Include your code in the report.

For parts 2 and 3, your completed penalized logistic regression.R should NOT
import other R packages.

4. (3 pts) Complete the part (a) in Q3 starter.R.

In this part, you need to fix your regularization parameter, lbd = 0, and to experiment
with the hyperparameters for stepsize (the learning rate) and max iter (the number
of iterations).

[Hints: (1) You only need to use the training data for this part. (2) A too small learning
rate takes longer to converge. (3) A too large learning rate is also problematic.]

– In the write-up, report and briefly explain which hyperparameter settings you found
work the best.

– For this choice of hyperparameters, generate and report a plot that shows how the
training loss changes (iteration counter on x-axis and training loss on y-axis).

– For this choice of hyperparameters, generate and report a plot for the training 0-1
error (iteration counter on x-axis and training error on y-axis).

– Did the training 0-1 error have the same pattern as the training loss? Is your finding
aligned with your expectation? State you reasoning.

5. (4 pts) Complete the part (b) in Q3 starter.R.

Using the selected setting of hyperparameters (for learning rate and number of iteration)
that you identified in step 4, fit the model by using λ ∈ {0, 0.01, 0.05, 0.1, 0.5, 1}.

– (1 pt) Does your selected setting of hyperparameters guarantee convergence for all
λ’s? If not, re-identify hyperparameters for those λ’s for which convergence is not
guranteed. Report the hyperparameter setting(s) you used for each λ.

– (1 pt) Generate and report one plot that shows how the training 0-1 error changes
as you train with different values of λ.

– (1 pt) Generate and report one plot that shows how the validation 0-1 error changes
as you train with different values of λ.

– (1 pt) Comment on the effects of λ based on these two plots. Which is the best
value of λ based on your experiment?

6. (2 pts) Complete the part (c) in Q3 starter.R.

Fit the model by using the best value of λ identified in step 5 and report its test 0-1
error. Compare your test error with the model fitted by using glmnet with the same λ.

7. (2 pts) Complete the part (d) in Q3 starter.R.

Use your implementation of LDA and Naive Bayes in Problem 2 to fit the training
data, classify the test data and report the test 0-1 error.

8. (2 pts) Complete the part (e) in Q3 starter.R.

Based on the test data, draw the ROC curves and compute the AUCs of your imple-
mented penalized logistic regression, LDA and Naive Bayes. (You might find the package
roc useful.)

SOLUTION:
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1. We start by simplifying J (β, β0):

J (β, β0)

= − 1

n

n∑
i=1

{
yi log

[
p(xi;β, β0)

]
+ (1− yi) log

[
1− p(xi;β, β0)

]}
+
λ

2
‖β‖22

= − 1

n

n∑
i=1

[
yi log

( eβ0+x>
i β

1 + eβ0+x>
i β

)
+ (1− yi) log

( 1

1 + eβ0+x>
i β

)]
+

λ

2
‖β‖22

= − 1

n

n∑
i=1

[
yi
[
log
(
eβ0+x>

i β
)
− log

(
1 + eβ0+x>

i β
)]

+ (1− yi)
[
− log

(
1 + eβ0+x>

i β)
)]]

+
λ

2
‖β‖22

= − 1

n

n∑
i=1

[
yi log

(
eβ0+x>

i β
)
− log

(
1 + eβ0+x>

i β)
)]

+
λ

2
‖β‖22

= − 1

n

n∑
i=1

yi
(
β0 + x>i β

)
+

1

n

n∑
i=1

log
(
1 + eβ0+x>

i β
)

+
λ

2
‖β‖22

Now we take a derivative with respect to β:

∂J (β, β0)

∂β
= − 1

n

n∑
i=1

yixi +
1

n

n∑
i=1

xie
β0+x>

i β

1 + eβ0+x>
i β

+ λβ

Plugging in specific (β̄, β̄0),

∂J (β, β0)

∂β

∣∣∣
β̄,β̄0

=
1

n

n∑
i=1

[
−yi +

eβ̄0+x>
i β̄

1 + eβ̄0+x>
i β̄

]
xi + λβ̄

For deriving ∂J (β,β0)
∂β0

∣∣
β̄,β̄0

, we can apply all of the simplification steps prior to taking the
derivative that we just did to get the following:

∂J (β, β0)

∂β0
=
− 1
n

∑n
i=1 ∂

[
yi
(
β0 + x>i β

)]
∂β0

+

1
n

∑n
i=1 ∂

[
log
(
1 + eβ0+x>

i β
)]

∂β0
+

∂
[
λ
2‖β‖

2
2

]
∂β0

= − 1

n

n∑
i=1

yi +
1

n

n∑
i=1

eβ0+x>
i β

1 + eβ0+x>
i β

Once again, we plug in specific specific (β̄, β̄0):

∂J (β, β0)

∂β0

∣∣∣
β̄,β̄0

=
1

n

n∑
i=1

[
−yi +

eβ̄0+x>
i β̄

1 + eβ̄0+x>
i β̄

]

2. For the remaining parts of the problem, we have separate coding solutions
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