
STA314: Statistical Methods for Machine Learning I

Midterm Exam – LEC0101
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Problem 1 (6 points)

Assume that we analyze the Carseats data set. The goal is to predict Sales.
Based on the following output of R, answer the questions.

Call:

lm(formula = Sales ~ Income + Advertising + Price + US

+ Advertising:US, data = Carseats)

Coefficients:

Estimate Std.Error t-value Pr(>|t|)

(Intercept) 12.205105 0.688920 17.716 <2e-16 ***

Income 0.010972 0.004298 2.553 0.0111 *

Advertising 0.043718 0.122387 0.357 0.7211

Price -0.053712 0.005069 -10.596 <2e-16 ***

USNo -0.075873 0.360800 -0.210 0.8335

Advertising:USNo 0.079992 0.124952 0.640 0.5224

---

Residual standard error: 2.387 on 394 degrees of freedom

Multiple R-squared: 0.2945,Adjusted R-squared: 0.2856

F-statistic: 32.9 on 5 and 394 DF, p-value: < 2.2e-16

(1) (1 point) The feature US is a factor with two levels: Yes or No. Based
on the above output, write down the way the feature US is encoded.
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(2) (1 point) In this linear regression model, how do you interpret the co-
efficient of USNo?

(3) (1 point) How do you interpret the coefficient of Advertising:USNo?

(4) (1 point) Based on the R output, can you conclude whether or not
Advertising is significant for predicting Sales at 0.05 significance le-
vel? Please state your reasoning.

(5) (2 points) Construct the 95% confidence interval for the coefficient of
Income. (Writing out the expression suffices. You don’t need to calculate
the exact values.) Interpret the meaning of a 95% confidence interval.
(You may assume the estimated coefficient is normal and use P{Z ≤
1.96} ≈ 0.975 for Z ∼ N(0, 1))
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Problem 2 (8 points)

In a regression problem, assume that the true model is

Y = X2 +X3 +X2
3 + ε,

where ε is a random noise. Suppose we fit the following two models by using
the training data containing n realizations of (Y,X1, X2, X3)

(M1) Y ∼ X2 +X3 +X2
3 ,

(M2) Y ∼ X1 +X2 +X3 +X2
1 +X2

2 +X2
3 .

Here the notation Y ∼ X+X ′ means to regress Y onto X and X ′ via the Or-
dinary Least Squares (OLS) approach. Under each model, we can construct

an estimator of the regression function, denoted by f̂i for i ∈ {1, 2}.

Please compare the two models, and give a short explanation, in terms of the
following aspects. (For example, M1 has larger variance than M2 or there is
no sufficient information about the comparison.)

(a) (2 points) squared bias of f̂i

(b) (2 points) variance of f̂i
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(c) (2 points) the test MSE of f̂i

(d) (2 points) the training MSE of f̂i
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Problem 3 (8 points)

Answer the following questions about the subset selection.

(a) (2 points) Given the following R code and output,

summary(regsubsets(Balance ~ Cards + Rating + Limit

+ Income + Student, Credit, method = "exhaustive"))

5 Variables (and intercept)

Selection Algorithm: exhaustive

Cards Rating Limit Income StudentYes

1 ( 1 ) " " "*" " " " " " "

2 ( 1 ) " " "*" " " "*" " "

3 ( 1 ) " " "*" " " "*" "*"

4 ( 1 ) "*" " " "*" "*" "*"

5 ( 1 ) "*" "*" "*" "*" "*"

write down all models with 4 features considered by the above code,
and indicate the best one. (You can use X1, . . . , X5 to represent the five
features in order)
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(b) (2 points) Given the following R code and output,

summary(regsubsets(Balance ~ Cards + Rating + Limit

+ Income + Student, Credit, method = "forward"))

5 Variables (and intercept)

Selection Algorithm: forward

Cards Rating Limit Income StudentYes

1 ( 1 ) " " "*" " " " " " "

2 ( 1 ) " " "*" " " "*" " "

3 ( 1 ) " " "*" " " "*" "*"

4 ( 1 ) " " "*" "*" "*" "*"

5 ( 1 ) "*" "*" "*" "*" "*"

write down all models with 4 features considered by the above code,
and indicate the best one. (You can use X1, . . . , X5 to represent the five
features in order)
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(c) (2 points) Let’s denote the model you find in (a) by M1, and denote the
model in (b) by M2. Which model (M1 or M2) has smaller training MSE
(or there is no sufficient information to tell)? Please briefly explain the
answer.

(d) (2 points) Which model would you expect to have smaller test MSE
(or there is no sufficient information to tell)? Please briefly explain the
answer.
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Problem 4 (8 points)

Based on the following output of R, answer the following questions.

> library(ISLR)

> library(boot)

> set.seed(1)

> glm.fit = glm(mpg ~ poly(horsepower, 2), data=Auto)

> cv.glm(Auto, glm.fit, K=5)$delta[1]

[1] 19.14336

(a) (1 point) Write down the model corresponding to line 4.

(b) (1 point) Briefly explain the meaning of the number 19.14336 in the
above R output.

(c) (2 points) If we change set.seed(1) to set.seed(2) in the above R
code, do you expect the same value 19.14336 as the output? Please
briefly explain.
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Now consider the following R output.

> set.seed(1)

> glm.fit2 = glm(mpg ~ poly(horsepower, 2), data=Auto)

> cv.glm(Auto, glm.fit2, K = nrow(Auto))$delta[1]

[1] 19.24821

(d) (2 points) If we change set.seed(1) to set.seed(2) in the above R
code, do you expect the same value 19.24821 as the output? Please
briefly explain.

(e) (2 points) Which of 19.14336 and 19.24821 do you expect to be closer
to the expected MSE of the model you write in part (a)?
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Problem 5 (10 points)

(a) (3 points) Consider the ridge regression with tuning parameter λ. Draw
a picture which contains three curves (squared bias, variance, test MSE)
of the fitted model. Use the x-axis to indicate values of λ which start
from a large number and decrease until 0. The y-axis should represent
the values of squared bias, variance and test MSE of the fitted models.

In your picture, indicate which curves correspond to the squared bi-
as, variance and test MSE, respectively. (Pay attention to the trend
and relative magnitudes of the three metrics.) Also indicate the points
correspond to the OLS.
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(b) Consider the estimator which solves the following problem

min
β=(β1,β2)

n∑
i=1

(yi − β1xi1 − β2xi2)2, subject to |β1|+ |β2| ≤ s. (1)

(b1) (1 point) In general, can the solution of Eq. (1) give us a sparse
model?

(b2) (2 points) Suppose the least squares estimate of (β1, β2) in this ex-

ample is (β̂LS1 , β̂LS2 ) = (−1, 1/2). Suppose we choose s = 2 in Eq.
(1). If the solution to Eq. (1) is unique for s = 2, does it contain
zeros? Please briefly explain your reasoning.
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(c) Suppose we consider another estimator which solves the following pro-
blem

min
β=(β1,β2)

n∑
i=1

(yi − β1xi1 − β2xi2)2, subject to
√
β2
1 + β2

2 ≤ s. (2)

Consider the two predictors based on estimators computed from Eq.
(1) and Eq. (2), respectively.

(c1) (2 points) Suppose we choose the same s in Eq. (1) and Eq. (2). In
general, which predictor has smaller training MSE, the one corre-
sponding to Eq. (1) or that corresponding to Eq. (2)? (or there is
no sufficient information to tell). Please briefly explain the reason.
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(c2) (2 points) Assume the true model is

Y = α1X1 + α2X2 + ε.

Suppose you can choose the best s for both Eq. (1) and Eg. (2).
When do we expect the predictor in Eq. (1) to have smaller test
MSE (in terms of the true coefficients α1 and α2)? And when do
we expect the predictor in Eq. (2) to have smaller test MSE?
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Problem 6 (10 points, 1 point for each subquestion)

Be sure to mark your answers on the answer sheet of multiple choice questi-
ons. There can be one to four correct answers to each question. One point
is assigned to a multiple choice question if and only if all correct answers to
this question are checked and no incorrect answer to this question is checked.

1. Which of the following statements are true

A Finding the clusters of data is usually a supervised learning problem.

B Both regression and classification problems belong to supervised lear-
ning problems.

C Linear regression is an example of parametric methods for estimating
the regression function.

D Ordinary Least Squares approach (OLS) can only be deployed under
linear models.

2. Assume that the model Y = f(X) + ε holds, where ε is a random noise
with mean 0 and independent of X, then

A The regression function f(x) minimizes the training mean squared er-
ror (MSE) at X = x.

B The regression function f(x) minimizes the expected mean-squared
prediction error at X = x.

C The expected mean-squared prediction error of f(x) is Var(ε).

D None of the above statements is correct.
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3. In which case, we usually prefer the nonparametric method rather than
the parametric method (the number of features we use to fit the model is
p and the sample size is n)

A When p is large and n is small

B When p is small and n is large

C When p is small and n is small

D None of the above statements is correct.

4. In a linear regression problem,

A The unknown regression coefficients can be estimated by the Ordinary
Least Squares (OLS) approach.

B A small value of the residual sum of squares (RSS) means that the
model is correct.

C A large value of R2 means that the model is correct.

D R2 can never be greater than 1.

5. Qualitative predictors in regression

A Can be incorporated using dummy variables.

B Can be interpreted despite the model is nonlinear in them.

C Can not be incorporated since qualitative predictors lead to a classifi-
cation problem.

D None of the above statements is correct.
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6. Which of the following statements are true

A Forward selection starts from the model only including the intercept.

B Best subset selection always finds the best model.

C Backward selection compares fewer models than forward selection.

D Backward selection might find the best model.

7. Which of the following statements are true

A BIC usually selects a model with fewer features than AIC.

B AIC and BIC require to specify the distribution of the observed data.

C AIC or BIC is more applicable than cross-validation for selecting dif-
ferent models.

D Cross-validation is always preferred over AIC or BIC.

8. Which of the following statements are true

A Lasso can yield a smaller training MSE than the OLS estimator.

B Lasso can possibly produce a sparse model.

C Ridge can produce a biased estimator.

D Ridge can have a smaller test MSE than Lasso when the true model is
sparse.
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9. Which of the following statements about local regression are true?

A A larger size of the neighborhood usually yields a fitted model with
smaller variance.

B A larger size of the neighborhood usually yields a fitted model with
smaller bias.

C A larger size of the neighborhood usually yields a fitted model with
smaller expected MSE.

D Local regression method suffers from curse of dimensionality.

10. In the following plot, what approach did we most likely use to fit the data?

A Polynomial regression

B Step function approach

C Local regression

D Linear spline
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