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Problem 1 (3 points)

Suppose we have n data points x1, . . . , xn generated i.i.d. from a 1-dimensional
normal distribution N(µ, 1) with some unknown mean µ. Consider the sample
mean estimator

µ̂ =
1

n

n∑
i=1

xi.

State at least two ways of estimating the variance of µ̂, based on x1, . . . , xn.

SOLUTION:

• (1 point) One way is to directly compute

Var(µ̂) =
1

n2

n∑
i=1

1 =
1

n

• (2 points) The other way is to use bootstrap: that is, for 1 ≤ j ≤ B
with B > 0 being a given bootstrap number, we resample bootstrap

samples x
(j)
1 , . . . , x

(j)
n and compute

µ̂(j) =
1

n

n∑
i=1

x
(j)
i .

Then the variance of µ̂ can be estimated by

1

B

B∑
j=1

(
µ̂(j) − µ̄B

)2
where

µ̄B =
1

B

B∑
j=1

µ̂(j).
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Problem 2 (8 points)

Consider a regression problem

Y = f(X) + ε

with X, Y ∈ R, where we use the natural cubic splines to parametrize f(X).

(a) (3 points) For three specified knots ξ1 < ξ2 < ξ3, verify that

f(X) = β0+β1X+β2

[
(X − ξ1)3+ − (X − ξ3)3+

ξ3 − ξ1
−

(X − ξ2)3+ − (X − ξ3)3+
ξ3 − ξ2

]
represents a natural cubic spline. Here (a)+ = a if a > 0 and 0 otherwise,
for any a ∈ R.

SOLUTION: We have

f1(x) := β0 + β1x, if x ≤ ξ1;

f2(x) := β0 + β1x+ β2
(x− ξ1)3

ξ3 − ξ1
, if ξ1 < x ≤ ξ2;

f3(x) := β0 + β1x+ β2

(
(x− ξ1)3

ξ3 − ξ1
− (x− ξ2)3

ξ3 − ξ2

)
, if ξ2 < x ≤ ξ3;

f4(x) := β0 + β1x+ β2

(
(x− ξ1)3 − (x− ξ3)3

ξ3 − ξ1

−(x− ξ2)3 − (x− ξ3)3

ξ3 − ξ2

)
, if x > ξ3.

It is easy to verify that

f1(ξ1) = f2(ξ1), f2(ξ2) = f3(ξ2), f3(ξ3) = f4(ξ3).
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Also, we have

f ′1(x) = β1, if x ≤ ξ1;

f ′2(x) = β1 + 3β2
(x− ξ1)2

ξ3 − ξ1
, if ξ1 < x ≤ ξ2;

f ′3(x) = β1 + 3β2

(
(x− ξ1)2

ξ3 − ξ1
− (x− ξ2)2

ξ3 − ξ2

)
, if ξ2 < x ≤ ξ3;

f ′4(x) = β1 + 3β2

(
(x− ξ1)2 − (x− ξ3)2

ξ3 − ξ1

−(x− ξ2)2 − (x− ξ3)2

ξ3 − ξ2

)
, if x > ξ3

= β1 + 3β2(ξ2 − ξ1) if x > ξ3

and
f ′1(ξ1) = f ′2(ξ1), f ′2(ξ2) = f ′3(ξ2), f ′3(ξ3) = f ′4(ξ3).

Finally,

f ′′1 (x) = 0, if x ≤ ξ1;

f ′′2 (x) = 6β2
x− ξ1
ξ3 − ξ1

, if ξ1 < x ≤ ξ2;

f ′′3 (x) = 6β2

(
x− ξ1
ξ3 − ξ1

− x− ξ2
ξ3 − ξ2

)
, if ξ2 < x ≤ ξ3;

f ′′4 (x) = 0, if x > ξ3

and
f ′′1 (ξ1) = f ′′2 (ξ1), f ′′2 (ξ2) = f ′′3 (ξ2), f ′′3 (ξ3) = f ′′4 (ξ3).
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(continue your answer of part (a).)
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(b) (3 points) For the three specified knots ξ1 < ξ2 < ξ3, write down a basis
representation of f(X) for cubic splines.

Based on this setting with 3 knots, deduce the number of parameters
(including the intercept term) we need to estimate for natural cubic
splines with K knots? State your reasoning.

SOLUTION:

• (1 point) For cubic splines, we have

f(X) = β0 + β1X + β2X
2 + β3X

3 + β4(X − ξ1)3+
+ β5(X − ξ2)3+ + β6(X − ξ3)3+.

• (1 point) For cubic splines with K knots, we need to estimate
(K + 4) parameters.

• (1 point) Since natural cubic splines add 2 constraints at each
boundary, we have K parameters to estimate for natural cubic
splines.
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(c) (2 points) If we consider to use natural cubic splines with K knots for
predicting Y , how do you expect the test MSE to change asK increases?
(You may reason based on the bias-variance decomposition)

SOLUTION: Since K determines the number of parameters to estimate
in a linear model, the squared bias would decrease while the variance
of the fitted model increases as K gets larger. The test MSE depends
on the interplay of the squared bias and variance.
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Problem 3 (9 points)

Suppose we are interested in classifying if a student will score A in this class
by using 2 features: the number of hours spent in this semester (X1), and the
current undergrad GPA (X2). Let us encode Y = 1{the student scores A}.

(a) By using the past training data, we fit a logistic regression and obtain

the estimated coefficients as β̂0 = −6, β̂1 = 0.05 and β̂2 = 1.

(a1) (1 point) Estimate the probability that a student who studies 40
hours and has an undergrad GPA of 3.5 gets an A in this class.
(Your final answer may contain the Euler’s number e)

SOLUTION:

P̂(Y = 1 | X = x) =
e−6+0.05×40+1×3.5

1 + e−6+0.05×40+1×3.5 =
e−0.5

1 + e−0.5
≈ 0.377.

(a2) (1 point) How many hours would the student in part (a1) at least
need to study to have a chance of getting an A in this class greater
than 50%?

SOLUTION: We need

e−6+0.05×X1+3.5 = e−2.5+0.05×X1 ≥ 1,

requiring X1 ≥ 50.
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(b) Suppose we only focus on a group of students with undergrad GPA of
3.0 and would like to examine the effect of X1 on the probability of
getting an A in this class via logistic regression. Suppose we have data
points of two students: (x1, y1) and (x2, y2).

(b1) (2 points) The MLE of the coefficient β0 and β1 are defined as

(β̂0, β̂1) = arg min
β0,β1∈R

2∑
i=1

[
−yi (β0 + β1xi1) + log

(
1 + eβ0+β1xi1

)]
(1)

Suppose we use the gradient descent to solve (1) with step size

equal to α. Write down the iterative updates of both β̂0 and β̂1.

SOLUTION: For t ≥ 0,

β̂
(t+1)
0 = β̂

(t)
0 + α

2∑
i=1

[
yi −

eβ̂
(t)
0 +β̂

(t)
1 xi1

1 + eβ̂
(t)
0 +β̂

(t)
1 xi1

]

β̂
(t+1)
1 = β̂

(t)
1 + α

2∑
i=1

[
yi −

eβ̂
(t)
0 +β̂

(t)
1 xi1

1 + eβ̂
(t)
0 +β̂

(t)
1 xi1

]
xi1
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(b2) (3 points) In the gradient descent you derived above, it is often-
times difficult to specify α. For this reason, the Newton’s method
is used in practice. For solving the root of a given differentiable
function f , that is, f(x) = 0, the Newton’s method iterates as

x(t+1) = x(t) − f(x(t))

f ′(x(t))
, for all t = 1, 2, . . . .

with f ′(·) being the derivative of f(·).
Suppose β0 = −3 in (1) and we only minimize over β1. State how

to adopt the Newton’s method for finding the β̂1 in (1). (You need
to explicitly specify the expressions of f(·) and f ′(·))
SOLUTION: The optimal solution β̂1 must satisfy

g(β̂1) :=
2∑
i=1

[
yi −

e−3+xi1β̂1

1 + e−3+xi1β̂1

]
xi1 = 0.

Therefore, we can use the Newton’s method to solve for β̂1 as

β̂
(t+1)
1 = β̂

(t)
1 −

g(β̂
(t)
1 )

g′(β̂
(t)
1 )

, ∀ t ≥ 0

where

g′(β) =
2∑
i=1

x2i1
e−3+xi1β

(1 + e−3+xi1β)2
.
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(continue your answer of part (b2).)
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(b3) (2 points) Suppose the training data (x1, y1) and (x2, y2) are well-
separated, that is, P(yi = 1 | X = xi) are arbitrarily close to 1 or
0, for all i ∈ {1, 2}.
Explain why using the Newton’s method in part (b2) would lead

to numerical instability at any iterate β̂
(t)
1 that is close to the true

β1.

SOLUTION: Since the data points are well-separated, it means
that

P(yi = 1 | X = xi) =
e−3+xi1β1

1 + e−3+xi1β1

are close to either 0 or 1 (here β1 is the true coefficient), implying
that

−3 + xi1β1

is either close to ∞ or −∞. In either case, g′(β1) ≈ 0. Therefore,

when β̂
(t)
1 is close to β1, g

′(β̂
(t)
1 ) is close to 0, leading to numerical

instability of its reciprocal.
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Problem 4 (12 points)

Consider the problem of classifying a random, discrete, class label Y ∈ {0, 1}
based on a 1-dimensional feature X ∈ R. We assume

P(Y = 1) = η, P(Y = 0) = 1− η, (2)

for some 0 < η < 1, and

X | Y = 0 ∼ N (−µ, 1) , X | Y = 1 ∼ N (µ, 1) . (3)

Let (y1, x1), . . . , (yn, xn) be n i.i.d. realizations of (Y,X) following (2) and (3).
Answer the following questions.

Recall that the probability density function of N(µ, σ2) at x is

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .
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(a) (2 points) Prove that the Bayes classifier f ∗ is

f ∗(x) =

 1 if 2µx ≥ log
(
1−η
η

)
0 otherwise

, for all x ∈ R.

SOLUTION: The posterior probability follows

P (Y = k | X = x) =
P(Y = k,X = x)

P(X = x)

=
P(Y = k)P(Y = k | X = x)

P(X = x)
.

We have

P (Y = 1 | X = x) ≥ P (Y = 0 | X = x)

⇐⇒ P(Y = 1) · P(Y = 1 | X = x) ≥ P(Y = 0) · P(Y = 0 | X = x)

⇐⇒ η√
2π
e−

(x−µ)2
2 ≥ 1− η√

2π
e−

(x+µ)2

2

⇐⇒ log(η)− 1

2
(x− µ)2 ≥ log(1− η)− 1

2
(x+ µ)2

⇐⇒ 2µx ≥ log
1− η
η

.

Thus, the Bayes classifier is

f ∗(x) =

{
1 if 2µx ≥ log 1−η

η

0 otherwise
, ∀x ∈ R.
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(b) Assuming µ > 0 throughout part (b).

(b1) (1 points) For the Bayes classifier you derived in part (a), draw
its decision boundaries for η = 1/2 (in the first plot) and η = 2/3
(in the second plot), respectively. (You may use loge(2) ≈ 0.7 and
assume µ = 1)
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SOLUTION: The first boundary is x = 0 while the second one is
x = − log(2)/2 ≈ −0.35.
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(b2) (4 points) For η = 1/2, indicate the Bayes error P(Y 6= f ∗(X)) on
the plot below, and proves that

P(Y 6= f ∗(X)) = Φ(−µ).

Here Φ(t) is the c.d.f. of N(0, 1) at t ∈ R, that is,

Φ(t) =

∫ t

−∞

1√
2π
e−

z2

2 dz.

Comment on how the Bayes error changes with µ.
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SOLUTION: The Bayes error equals the shaded area.
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The Bayes error for η = 1/2 equals

P(Y 6= f ∗(X)) = P {Y = 1, f ∗(X) = 0}+ P {Y = 0, f ∗(X) = 1}

where

f ∗(x) =

{
1 if 2µx ≥ 0

0 otherwise
, ∀x ∈ R.

Note that

P {Y = 1, f ∗(X) = 0} = P {Y = 1, 2µX < 0}
= P{Y = 1}P {X < 0 | Y = 1}

=
1

2
P {Z < −µ}

= Φ(−µ).

with Z ∼ N(0, 1). Since similar arguments can be used to show

P {Y = 0, f ∗(X) = 1} =
1

2
P {Z ≥ µ} .
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we conclude

P(Y 6= f ∗(X)) =
1

2
P {Z < −µ}+

1

2
P {Z ≥ µ} = Φ(−µ).

The Bayes error decreases as µ increases.
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(Continue your answer of part (b2).)
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(c) (3 points) Prove that the maximum likelihood estimators (MLE) of η
and µ are

η̂ =
1

n

n∑
i=1

yi, µ̂ =
1

n

n∑
i=1

[yixi − (1− yi)xi] . (4)

SOLUTION: Let ϑ = (η, µ) and fk(x) be the p.d.f. of X | Y = k at
X = x for k ∈ {0, 1}. The joint likelihood of (y1, x1) is

L(y1, x1;ϑ) = P(Y = y1) · f1(x1)

=

[
η√
2π
e−

(x1−µ)
2

2

]y1 [1− η√
2π

e−
(x1+µ)

2

2

]1−y1
.

Hence, the joint log-likelihood of (y1, x1), . . . , (yn, xn) follows

`(ϑ) ∝
n∑
i=1

{
yi

[
log(η)− 1

2
(xi − µ)2

]
+ (1− yi)

[
log(1− η)− 1

2
(xi + µ)2

]}
.

after ignoring terms that do not depend on ϑ. By taking the partial
derivatives w.r.t. η and µ, we have

∂`(ϑ)

∂η
=

n∑
i=1

{
yi
η
− 1− yi

1− η

}
=

1

η(1− η)

n∑
i=1

(yi − η)

∂`(ϑ)

∂µ
=

n∑
i=1

{yi(xi − µ)− (1− yi)(xi + µ)} .

Letting the above equations equal to zero and solving for η and µ give

η̂ =
1

n

n∑
i=1

yi,

µ̂ =
1

n

n∑
i=1

[yixi − (1− yi)xi] .
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(Continue your answer of part (c).)
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(d) (2 points) Suppose the training data set contains: (y1, x1) = (1, 1),
(y2, x2) = (1, 0), (y3, x3) = (1, 1/2) and (y4, x4) = (0,−1/2). Suppose

we estimate the Bayes classifier by f̂ , the plug-in estimator based on
the MLEs of η and µ in (4).

Compute the predicted label of f̂ at the test point x = −1. (You might
use the fact that loge(3) > 1)

SOLUTION: From part (c), we have

η̂ = 3/4, µ̂ =
1

4

(
1 + 0 +

1

2
+

1

2

)
=

1

2

and

f̂(x) =

{
1 if 2µ̂x ≥ log 1−η̂

η̂

0 otherwise
, ∀x ∈ R.

From part (a), since

2µ̂x+ log
η̂

1− η̂
= −1 + log(3) > 0,

we have f̂(−1) = 1.
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Problem 5 (8 points)

Answer the questions based on the following two fitted regression trees of
using two features X1 and X2.

Figure 0.1: Two fitted decision trees
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(a) (2 points) Sketch the fitted decision tree corresponding to the partition
of the feature space in the left-hand panel of Figure 0.1. The numbers
inside the boxes indicate the averaged responses of the training data
within each region.

SOLUTION:
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(b) (2 points) Create a diagram similar to the left-hand panel, using the
tree illustrated in the right-hand panel of Figure 0.1. You should divide
up the feature space into the correct regions, and indicate both the axis
value of each split and the mean of each region.

SOLUTION:
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(c) (2 points) For the three new data points x1 = (0.3, 0.8), x2 = (−0.5, 2)
and x3 = (3, 0), state their predicted values from each of the individual
decision tree above.

If the two fitted decision trees are from the bagging procedure, state
the final predicted values of x1, x2 and x3.

SOLUTION: The predicted values of the first decision tree are

ŷ1 = 0, ŷ2 = 10, ŷ3 = 5

while the predicted values of the second decision tree are

ŷ′1 = −3, ŷ′2 = 7, ŷ′3 = 2.

The bagging predicts each data by the average of two fitted predictions
as

ŷ′′1 = −1.5, ŷ′′2 = 8.5, ŷ′′3 = 3.5.
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(d) (2 points) For the fitted tree corresponding to the left panel in Figure
0.1, denote it by T0. Suppose each region of T0 contains the same number
of training data points.

The tree-pruning prcedure seeks a subtree T ⊂ T0 such that

|T |∑
j=1

∑
i∈Rj

(yi − ȳj)2 + α|T | (5)

is minimized. Here Rj denotes the jth region in the partition induced by
T , |T | is the number of leaf nodes of T and ȳj is the averaged responses
of the data points in Rj.

Suppose we use a value of α such that solving (5) gives a subtree T̂

with |T̂ | = 3. Draw the subtree T̂ (similar to the right-hand panel in
Figure 0.1) and briefly state your reasoning.

SOLUTION: Pruning will remove the two splits at the bottom, leading
to the following tree.

For the averaged response of the combined region, since all merged
regions have the same number of data points, the new averaged response
is simply the average of the predicted values of the three merged regions,
i.e. 0− 3 + 4/3 = 1/3.
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Problem 6 (10 points, 1 point for each subquestion)

Be sure to mark your answers on the answer sheet of multiple choice questi-
ons. There can be one to four correct answers to each question. One point
is assigned to a multiple choice question if and only if all correct answers to
this question are checked and no incorrect answer to this question is checked.

1. Which of the following statements are true

A The Bayes classifier usually has the smallest training error rate among
all possible classifiers.

B The Bayes classifier usually has the smallest expected test error rate
among all possible classifiers.

C When Y has three categories (e.g., Y ∈ {1, 2, 3}), the Bayes error rate
can be greater than 0.5.

D The training error rate of the Bayes classifier is always greater than 0.

SOLUTION: BC

2. Which of the following statements are true

A Logistic regression is a regression approach.

B The maximum likelihood estimator (MLE) of the coefficients under
logistic regression has a closed-form expression.

C The Bayes classifier in logistic regression has a decision boundary that
is linear in the feature space.

D Logistic regression cannot handle qualitative features.

SOLUTION: C
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3. Which of the following statements are true

A The decision boundary of the Bayes classifier in LDA is linear in X.

B LDA cannot handle qualitative features.

C LDA cannot be used when the response Y has three categories (e.g.,
Y ∈ {1, 2, 3}).

D In LDA, we cannot estimate the conditional probability P(Y = 1 |
X = x).

SOLUTION: AB

4. Which of the following statements are true

A QDA is a more flexible method than LDA.

B Naive Bayes classifier is a more flexible method than QDA.

C QDA usually has smaller training error rate than LDA.

D QDA usually has smaller test error rate than LDA.

SOLUTION: AC

5. Which of the following statements are true

A Gradient descent can only be used to solve convex optimization pro-
blems

B Gradient descent can only be used to solve optimization problems with
differentiable loss function

C Stochastic gradient descent uses only one data point per iteration

D Stochastic gradient descent can cost more iterations to converge

SOLUTION: BCD
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6. Which of the following statements are true

A For convex optimization problems, using gradient descent always con-
verges regardless of the choice of step size

B A too small step size leads to overfitting

C A too small step size takes longer to converge

D A too large step size renders the algorithm not to converge

SOLUTION: CD

7. In the following plot, we compare two classification methods (called Test
A and Test B) based on their ROC curves on the training data. Which of
the following statements are true?

A Test B is better than A in the training data set.

B Test A is better than B in the training data set.

C Test A has smaller test error than B.

D Test B has smaller test error than A.

SOLUTION: B
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8. Which of the following statements are true between two classifiers

A The classifier with lower false negative rate (FNR) must have higher
false positive rate (FPR)

B The classifier with lower FNR must have smaller misclassification rate

C The classifier with both lower FNR and lower FPR must have smaller
misclassification rate

D The classifier with both lower FNR and lower FPR does not necessarily
have smaller misclassification rate

SOLUTION: C

9. Which of the following statements are true?

A Simple decision trees are easy to interpret

B Simple decision trees cannot handle categorical features

C Fitted simple decision trees can have large variance

D Simple decision trees can have zero training error

SOLUTION: ACD

10. Which of the following statements are true

A Bagging and random forests are used to reduce the bias of simple
decision-trees.

B Both bagging and random forests are used to reduce the variance of
simple decision-trees.

C Bagging and boosting can only be used in the context of decision-trees.

D Both bagging decision trees and random forests use bootstrap samples.

SOLUTION: BD
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(You may use this page as scratch paper if needed. This is the last page
of the exam.)

34


