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Review on regularized linear regression

OLS that uses p features based on n data points cannot perform well
when p is large relative to n.

Regularized approach such as Lasso and Ridge can have better
performance

▶ Reduce variance
▶ Pay extra bias

The benefit of regularization could be significant if the true model
coefficients are either small or sparse.

▶ If only s ≪ p features are predictive, we should only fit OLS by using
these s features.
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Linearity in features vs in parameters

The linearity assumption in the feature space (in X ) is almost always an
approximation, and sometimes a poor one.

Example

Consider X = (X1,X2).

Y = β0 + β1X1 + β2X2 + ε.

What about the following one?

Y = β0 + β1X1 + β2X2 + β3X
2
1 + β4X

2
+ β5(X1X2) + ε.

Also a linear model in β = (β0, β1, . . . , β4) but not in X = (X1,X2).
Implication: can deploy

OLS

Subset selection

Regularized linear regression
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Moving Beyond Linearity

We consider the following extensions to relax the linearity assumption (in
the feature space).

Univariate case (p = 1):
▶ Polynomial regression

▶ Step functions

▶ Regression splines

Multivariate case (p > 1):
▶ Local regression

▶ Generalized additive models
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Polynomial Regression

The polynomial regression assumes

yi = β0 + β1xi + β2x
2
i +⋯+ βdx

d
i + εi ,

where εi is the error term and xi ∈ X .

Can be fitted by the OLS approach, the ridge and the lasso.

Coefficients themselves are not interpretable; we are more interested
in the trend of the fitted function

f̂ (x) = β̂0 + β̂1x + β̂2x
2
+⋯+ β̂dx

d
, ∀x ∈ X .
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Polynomial Regression

The degree d in practice is typically no greater than 4, and can be
chosen via cross-validation.

The polynomial regression can be used for classification as well.
▶ For instance, in the logistic regression,

logit (P(Yi = 1 ∣ Xi = xi)) = β0 + β1xi + β2x
2
i +⋯+ βdx

d
i .

▶ Can be fit by maximizing the likelihood.

However, polynomials have notorious tail behavior – very bad for
extrapolation.

Stat methods for ML (UofT) STA314-Lec5 6 / 44



The Wage Data

Left: The solid blue curve is a degree-4 polynomial of wage as a function of age, fit by the OLS.
The dotted curves are estimated 95 % confidence intervals.

Right: Model the binary event 1{wage > 250} by logistic regression, with a degree-4 polynomial.
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Step Functions

The polynomial regression imposes a global structure on the
non-linearity of X .

The step function approach avoids such a global structure by
breaking the range of X into bins.

For pre-specified K cut points c1 ≤ c2 ≤⋯ ≤ cK−1 ≤ cK , define

C0(X ) = 1{X < c1},
C1(X ) = 1{c1 ≤ X < c2},

⋮

CK (X ) = 1{cK ≤ X}.

C0(X ), . . . ,CK (X ) are in fact (K + 1) dummy variables, and they
sum up to 1.
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Step Functions

Step function approach assumes

yi = β0 + β1C1(xi) + β2C2(xi) + ... + βKCK (xi) + εi ,

where εi is the error term.
1

Can be fitted by the OLS and shrinkage regression.

Interpretation: βj represents the average change in the response Y
for cj ≤ X < cj+1 relative to X < c1.

1
We don’t need C0(xi) in the model when we also have the intercept term β0.
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The Wage Data

Left: The solid blue curve is a step function of wage as a function of age, fit by least squares.
The dotted curves indicate an estimated 95 % confidence interval.

Right: Model the binary event 1{wage > 250} by logistic regression, with the step function.
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Pros and Cons of Step Function

The step function approach is widely used in biostatistics and
epidemiology among other areas:

▶ the model is easy to fit
▶ the regression coefficient has a natural interpretation

However, piecewise-constant functions can miss the trend of the true
relationship between Y and X . The choice of cut points can be
difficult to specify.

How about combining polynomial and step function?
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Piecewise Polynomials

Instead of a single polynomial in X over its whole domain, we can use
different polynomials in different regions:

The cut point c is called knot. Using more knots leads to a more
flexible piecewise polynomial.

In general, if we place K different knots throughout the range of X ,
then we will end up fitting (K + 1) different cubic polynomials.
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The Wage Data
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Regression splines

Better to add constraints to polynomials at the knots for:
▶ continuity: equal function values
▶ smoothness: equal first and second order derivatives
▶ higher order derivatives

The constrained polynomials are called splines. A degree-d spline
contains piecewise degree-d polynomials, with continuity in
derivatives up to degree (d − 1) at each knot.

How can we construct the degree-d spline?
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Linear Splines

A linear spline has piecewise linear functions continuous at each
knot. That is, with knots at ξ1 < ξ2 <⋯ < ξK ,

yi = β0 + β1xi + β2(xi − ξ1)+⋯+ βK+1(xi − ξK )+ + εi ,

where, for each 1 ≤ k ≤ K ,

(xi − ξk)+ = { xi − ξk , if xi > ξk
0 otherwise

.

Interpretation of β1: the averaged increase of Y associated with one
unit of X for X < ξ1.
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Basis Functions

A basis representation:

yi = β0 + β1b1(xi) + β2b2(xi) +⋯+ βKbK (xi) + εi ,

where bk(⋅) for 1 ≤ k ≤ K are basis functions:

Polynomials:

bk(xi) = x
k
i .

Step Functions:
bk(xi) = Ck(xi).

Linear splines:

b1(xi) = xi , bk(xi) = (xi − ξk−1)+, k = 1, . . . ,K ,

Stat methods for ML (UofT) STA314-Lec5 16 / 44



Linear Splines
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Cubic Splines

A cubic spline has piecewise cubic polynomials with continuous
derivatives up to order 2 at each knot.

That is, with K knots at ξ1 < ξ2 <⋯ < ξK ,

yi = β0 + β1b1(xi) + β2b2(xi) + ... + βK+3bK+3(xi) + εi ,

where bk(⋅) are basis functions

b1(xi) = xi , b2(xi) = x
2
i , b3(xi) = x

3
i ,

bk+3(xi) = (xi − ξk)3
+, k = 1, . . . ,K .
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Cubic Splines
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Natural Splines

A natural spline is a regression spline with additional boundary constraints:
the function is required to be linear at the boundary.
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More on splines

Choosing the number and locations of the knots
▶ Typically, we place K knots at certain quantiles of the data or place on

the range of X with equal space. Oftentimes, the placement of knots is
not very crucial.

▶ We use cross-validation to choose K .

Polynomial regressions and step functions are special cases of splines.

Another variant: smoothing spline (ISLR 7.5).
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Move beyond linearity

What about p > 1?

Local approach for p < 4
▶ nearest neighor approach
▶ local regression

Generalized Additive Models (GAM) for large p.
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Local approach

Example (k nearest neighbours)

Pick the number of neighbors k ∈ {1, . . . , n}

To predict at X = x0, find the k neareast neighbors of x0 among
{x1, . . . , xn}, collected in Nk(x0)

Predict by using the local average

f̂ (x0) =
1

k
∑

i∈{1,...,n}∶xi∈Nk(x0)
yi
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k nearest neighbors: the role of k
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k = 1 nearest neighbor
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k = 3 nearest neighbors
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k = 3 nearest neighbors
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k = 10 nearest neighbors
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k nearest neighbours: role of k
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Role of k

Controls the bias and variance tradeoff!

A smaller k means more flexible predictor
▶ Larger variance
▶ Smaller bias

How to select k?
▶ CV!
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Generalization of k-nn: weighted k-nn

Recall that k-nn predicts by using the local average

f̂ (x0) = ∑
i∈{1,...,n}∶xi∈Nk(x0)

1

k
yi .

Can we choose different weights for each neighbour?

f̂ (x0) = ∑
i∈{1,...,n}∶xi∈Nk(x0)

K(xi , x0) yi

with
0 ≤ K(xi , x0) ≤ 1, ∑

i∈{1,...,n}∶xi∈Nk(x0)
K(xi , x0) = 1.
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Choices of the weight

One popular choice is the so-called inverse distance weighting (IDW).
Of course there are other more sophisticated weighting scheme......

IDW: Compute the inverse distances

IDi =
1

∥xi − x0∥2
, ∀xi ∈ Nk(x0).

The weights are

K(xi , x0) =
IDi

∑i∶xi∈Nk(x0) IDi
, ∀xi ∈ Nk(x0).
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Weighted k-nn vs k-nn
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Generalization of k-nn: local regression

Recall that k-nn predicts by using the local average of the responses

f̂ (x0) =
1

k
∑

i∶xi∈Nk(x0)
yi . (1)

Local (linear) regression:

f̂ (x0) = β̂0 + β̂1x0 (2)

where

(β̂0, β̂1) = argmin
β0,β1

∑
i∶xi∈Nk(x0)

1

k
(yi − β0 − β1xi)2

.

Discussion: connection between (1) and (2)?
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k-nn vs local linear regression
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Local (linear) regression

Local regression predicts at a target point x0 using only the nearby
training observations in a weighted scheme.

Predict at x = x0 by
f̂ (x0) = β̂0 + β̂1x0

where

(β̂0, β̂1) = argmin
β0,β1

∑
i∶xi∈Nk(x0)

K(xi , x0) (yi − β0 − β1xi)2
,

using the weighted least squares.
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k-nn vs local linear regression
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Local Regression
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Simulated Example

The blue curve is true f (x), and the light orange curve is the local regression f̂ (x). The orange
points are local to the target point x0, represented by the orange vertical line. The yellow
bell-shape indicates weights assigned to each point. The fit f̂ (x0) at x0 is obtained by fitting a
weighted linear regression (orange line segment), and using the fitted value at x0 (orange solid

dot) as the estimate f̂ (x0).
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Local Regression

The size of the neighborhood (fraction s of training data) is a tuning
parameter, which can be chosen by cross-validation.

The weight of each point in the neighborhood needs to be specified.

When we have two dimensional predictors X1 and X2, we can simply
use 2-dimensional neighborhoods, and fit bivariate linear regression
models using the observations that are near each target point in
2-dimensional space.

However, local regression can perform poorly if p ≥ 4 (the curse of
dimensionality).
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Generalized Additive Models

Generalized additive models (GAMs) provide a general framework
for extending a standard linear model by allowing non-linear functions
of each of the variables, while maintaining additivity,

yi = β0 + f1(xi1) + f2(xi2) +⋯+ fp(xip) + εi .

Each fj for 1 ≤ j ≤ p can be linear functions, polynomials, step
functions, splines and local regression.

Can be applied to classification problems.
▶ Logistic regression:

logit (P(Yi = 1 ∣ Xi = xi)) = β0 + f1(xi1) + f2(xi2) +⋯+ fp(xip).
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Wage Data

Consider the wage data

wage = β0 + f1(year) + f2(age) + f3(education) + ε.

The first two functions are natural splines in year and age. The third
function is a step function, fit to the qualitative variable education.
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Pros and Cons of GAMs

GAMs allow us to fit a non-linear function fj to each Xj : model
complicated relationship between the respone and the original feature
space.

The non-linear fit can potentially improve prediction accuracy.

Because the model is additive, we can still examine the effect of each
Xj on Y individually while holding all of the other variables fixed.

It avoids the curse of dimensionality by assuming additivity.

However, GAMs fail to incorporate the interaction of variables.
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So far on regression problems

Linear regression already covers a wide range of models!
▶ Polynomials
▶ Step functions
▶ Splines
▶ GAMs

Local approaches
▶ k-nn
▶ local regressions

Later we will learn tree-based approaches and neural nets!
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