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Review

Best subset selection
▶ Great! But computationally unaffordable (choose from 2

p
models)!

Stepwise subset selection
▶ Forward stepwise selection
▶ Backward stepwise selection
▶ Computationally affordable, but greedy approaches

Are there better alternatives?
▶ Shrinkage Methods! In particular, the Lasso.
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Shrinkage Methods / Regularization

We can fit a model containing all p predictors using a technique that
constrains or regularizes the coefficient estimates by shrinking the
coefficient estimates towards zero.

Shrinking the coefficient estimates can significantly reduce their
variances.

The two best-known techniques for shrinking the regression
coefficients towards zero are the ridge regression and the lasso.
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Ridge Regression

Recall that the OLS fitting procedure estimates β0, ..., βp using the
values that minimize

n

∑
i=1

(yi − β0 −
p

∑
j=1

βjxij)2
.

The ridge regression estimates β0, . . . , βp using the values that
minimize

n

∑
i=1

(yi − β0 −
p

∑
j=1

βjxij)2
+ λ

p

∑
j=1

β
2
j

where λ ≥ 0 is a tuning (regularization) parameter, to be determined
later.
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Comments

β̂
R
λ = argmin

β=(β0,...,βp)∈Rp+1

n

∑
i=1

(yi − β0 −
p

∑
j=1

βjxij)2

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
RSS

+λ
p

∑
j=1

β
2
j .

We usually denote the ridge regression estimator by β̂
R
λ , because

different λ’s produce distinct estimators.

The term λ∑p
j=1 β

2
j is called a shrinkage / regularization penalty,

which shrinks the estimates of each βj towards 0.

We usually do not penalize the intercept β0.

Comparing to the OLS estimator, the ridge regression finds the
coefficient estimate of β that has small entries (toward 0) by
affording a slightly larger RSS . The balance is controlled by λ.
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More Comments

Selecting a good value for λ is critical. For λ = 0, the ridge estimator
of β coincides with the OLS estimator. Cross-validation could be
used to select λ.

In practice, we recommend the standardized predictors for ridge
regression, using the formula

x̃ij =
xij√

1
n
∑n

i=1(xij − x̄j)2
.

All standardized predictors have standard deviation equal to one.
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Credit Card Data Example

In the left-hand panel, each curve corresponds to the ridge regression coefficient estimate
for one of the 10 variables, plotted as a function of λ.

The right-hand panel displays the same ridge coefficient estimates as the left-hand panel,

but we now display ∥β̂R
λ∥2/∥β̂∥2, where β̂ denotes OLS estimator.
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Ridge Regression Improves Over OLS in terms of MSE

Squared bias (black), variance (green), and test mean squared error (purple) for the ridge
regression. The dashed lines indicate the smallest possible MSE.
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Advantages of Ridge Regression

Ridge does a better job for prediction than the OLS approach by
reducing the coefficient estimates.

▶ Ridge reduces the variance of fitted model by trading off the bias

Ridge regression is computationally efficient (for a given λ),
comparable to the OLS approach.
In particular, it is (much) faster than the best subset selection.
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Limitation of Ridge Regression

Can we use ridge regression for variable selection (excluding features
that are not important by setting their estimates to 0)?

No, it tends to include all p features in the fitted model!

So, the resulting fitted model is difficult to interpret.
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The Lasso

Different from ridge, lasso shrinks the coefficients by penalizing their
absolute values.

Specifically, the lasso coefficients, β̂
L
λ, minimize the quantity

n

∑
i=1

(yi − β0 −
p

∑
j=1

βjxij)2
+ λ

p

∑
j=1

∣βj ∣

where λ ≥ 0 is a tuning parameter, to be determined later.

Different from the ridge regression that uses the `2 penalty

∥β∥2
2 =

p

∑
j=1

β
2
j ,

lasso uses the `1 penalty

∥β∥1 =

p

∑
j=1

∣βj ∣.
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More Comments

Similar to ridge regression, the lasso shrinks the coefficient estimates
towards zero.

However, in the case of the lasso, the `1 penalty has the effect of
forcing some of the coefficient estimates to be exact zero when the
tuning parameter λ is sufficiently large.

Therefore, the lasso performs variable selection.

We say that the lasso yields a sparse model if the fitted model
involves only a subset of the variables.

Similar to ridge regression, selecting a good value of the
regularization parameter λ for the lasso is critical; cross-validation is
again the method of choice.
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Credit Card Data Example
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Credit Card Data Example

In the left-hand panel, each curve corresponds to the ridge regression coefficient estimate
for one of the 10 variables, plotted as a function of λ.

The right-hand panel displays the same ridge coefficient estimates as the left-hand panel,

but we now display ∥β̂R
λ∥2/∥β̂∥2, where β̂ denotes OLS estimator.
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Magic of the Lasso

Why does the lasso, unlike ridge regression, yield coefficient estimates that
have exact zero?
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Another Formulation for Ridge Regression and Lasso

The lasso and ridge regression coefficient estimates solve the problems

Here s ≥ 0 is some regularization parameter (connected with the original
λ).
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Understand why the Lasso yields zero estimates

The solid areas are the constraint regions, ∣β1∣+ ∣β2∣ ≤ s and β
2
1 + β

2
2 ≤ s,

while the red ellipses are the contours of the RSS.
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Lasso vs Ridge

The ability of yielding a sparse model is a huge advantage of Lasso
comparing to Ridge.

A more sparse model means more interpretability!

What about their prediction performance?

Stat methods for ML (UofT) STA314-Lec4 18 / 35



Comparing the MSE of Lasso and Ridge

Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso on a
simulated data set.
Right: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge

(dotted). Both are plotted against their R
2

on the training data, as a common form of indexing.
The crosses in both plots indicate the lasso model for which the MSE is smallest.

When the true coefficients are non-sparse, ridge and lasso have the same bias but ridge
has a smaller variance hence a smaller MSE.
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Another Case

When the true coefficients are sparse, Lasso outperforms ridge
regression of having both a smaller bias and a smaller variance.
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Conclusions on Lasso relative to Ridge

These two examples illustrate that neither ridge regression nor the
lasso will universally dominate the other.

In general, one might expect the lasso to perform better when the
response is only related with a relatively small number of predictors.

As the ridge regression, when the OLS estimates have excessively high
variance, the lasso solution can yield a reduction in variance at the
expense of a small increase in bias, and consequently can lead to
more accurate predictions.

Unlike ridge regression, the lasso performs variable selection, and
hence yields models that are easier to interpret.
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A simple example of the shrinkage effects of ridge and lasso

Assume that n = p and X = In. We force the intercept term β0 = 0.

In this way,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

⋮
yp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1

⋮
βp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

⋮
εp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We assume

E[εj] = 0, E[ε2
j ] = σ2

, ∀j ∈ [p].
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The OLS estimator

The OLS approach is to find β1, . . . , βp that minimize

p

∑
j=1

(yj − βj)2
.

This gives the OLS estimator

β̂j = yj , ∀j ∈ {1, . . . , p}.
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The ridge estimator

The ridge regression is to find β1, . . . , βp that minimize

p

∑
j=1

(yj − βj)2
+ λ

p

∑
j=1

β
2
j .

This leads to the ridge estimator

β̂
R
j =

yj
1 + λ

, ∀j ∈ {1, . . . , p}.

Since λ ≥ 0, the magnitude of each estimated coefficient is shrinked
toward 0.
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The lasso estimator

The lasso is to find β1, . . . , βp that minimize

p

∑
j=1

(yj − βj)2
+ λ

p

∑
j=1

∣βj ∣.

This gives estimator

The estimated coefficients from Lasso are also shrinked. The above
shrinkage is known as the soft-thresholding.
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An illustrative figure
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Bias and Variance of the OLS

Recall
yj = βj + εj , ∀j ∈ [p].

For any j ∈ [p], the OLS estimator β̂j = yj satisfies

Bias:
E[β̂j] = E[yj] = E[βj + εj] = βj

Variance:
Var(β̂j) = Var(εj) = σ2
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MSE of the OLS

Mean squared error of the jth coefficient:

E [(β̂j − βj)
2] = (E[β̂j] − βj)

2
+ Var(β̂j) = σ2

Mean squared error of all p coefficients:

E
⎡⎢⎢⎢⎢⎢⎢⎢⎣

p

∑
j=1

(β̂j − βj)
2
⎤⎥⎥⎥⎥⎥⎥⎥⎦
= pσ

2
.
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Bias and Variance of the Ridge

Recall
yj = βj + εj , ∀j ∈ [p].

For any j ∈ [p], the ridge estimator with tuning parameter λ,

β̂
R
j =

yj
1 + λ

,

satisfies

Bias:

E[β̂Rj ] = E [
yj

1 + λ
] = E [

βj + εj
1 + λ

] =
βj

1 + λ
.

Variance:

Var(β̂Rj ) = Var (
εj

1 + λ
) = σ

2

(1 + λ)2
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MSE of the ridge

Mean squared error of the jth coefficient:

E [(β̂Rj − βj)
2
] = (E[β̂Rj ] − βj)

2
+ Var(β̂Rj )

= (
βj

1 + λ
− βj)

2

+
σ

2

(1 + λ)2

=
λ

2
β

2
j

(1 + λ)2
+

σ
2

(1 + λ)2
.

Recall that E[(β̂j − βj)2] = σ2
.

Mean squared error of all p coefficients:

E
⎡⎢⎢⎢⎢⎢⎢⎢⎣

p

∑
j=1

(β̂Rj − βj)
2
⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

λ
2 ∑p

j=1 β
2
j + pσ

2

(1 + λ)2
.
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On selecting the tuning parameter

Similar as the subset selection, for ridge and lasso, we require a
systematic way of choosing the best model under a sequence of fitted
models (from different choices of λ)

▶ Equivalently, we require a method to select the optimal value of the
tuning parameter λ.

Cross-validation: we choose a grid of λ, and compute the
cross-validation error rate for each value of λ.

We then select the λ∗ for which the cross-validation error is smallest.

Finally, the model is re-fitted by using all of the available observations
and the selected λ∗.
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Credit Card Data Example

Cross-validation errors that result from applying ridge regression to the
Credit data set for various choices of λ.
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More choices of penalties

There are many other penalties in addition to the `2 and `1 norms
used by ridge and lasso.

▶ the elastic net:

argmin
β

∥y − Xβ∥2
2 + λ [(1 − α)∥β∥1 + α∥β∥2]

for some tuning parameters λ ≥ 0 and α ∈ [0, 1].

▶ The ridge corresponds to α = 1
▶ The Lasso corresponds to α = 0.
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The group lasso

▶ If we suspect the model is nonlinear in X1 or X2, we can add quadratic
terms, say

Y = β0 + β1X1 + β2X
2
1 + β3X2 + β4X

2
2 + ε.

The group lasso estimator minimizes

RSS + λ (
√
β2

1 + β
2
2 +

√
β2

3 + β
2
4) .

In this penalty, we view β1 and β2 (coefficient of X1 and X
2
1 ) as if they

belong to the same group. The group Lasso can shrink the parameters
in the same group (both β1 and β2) exactly to 0 simultaneously.

▶ There are a lot more penalties out there ......
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Regularization in more general settings

The ridge and lasso regressions are not restricted to the linear models.

The idea of penalization is generally applicable to almost all
parametric models.

β̂λ = argmin
β

L(β,Dtrain) + λ ⋅ Pen(β)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

g(β;Dtrain)

.

▶ OLS: L(β,Dtrain) = ∥y − Xβ∥2
2, Pen(β) = 0.

▶ Ridge: L(β,Dtrain) = ∥y − Xβ∥2
2, Pen(β) = ∥β∥2

2.
▶ Lasso: L(β,Dtrain) = ∥y − Xβ∥2

2, Pen(β) = ∥β∥1.
▶ In principal,

▶ L can be any loss function, i.e. negative likelihood, 0-1 loss.
▶ Pen could be any penalty function.
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