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Review

@ Best subset selection
» Great! But computationally unaffordable (choose from 2° models)!

@ Stepwise subset selection

» Forward stepwise selection
» Backward stepwise selection
» Computationally affordable, but greedy approaches

@ Are there better alternatives?
» Shrinkage Methods! In particular, the Lasso.
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Shrinkage Methods / Regularization

@ We can fit a model containing all p predictors using a technique that
constrains or regularizes the coefficient estimates by shrinking the
coefficient estimates towards zero.

@ Shrinking the coefficient estimates can significantly reduce their
variances.

@ The two best-known techniques for shrinking the regression
coefficients towards zero are the ridge regression and the lasso.
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Ridge Regression

@ Recall that the OLS fitting procedure estimates fy, ..., 8, using the
values that minimize

n p
Z(YI = Bo — Z ﬁinj)2'
i=1 j=1

@ The ridge regression estimates f3y, ..., 3, using the values that

minimize , »
2 2
Z(YI = Bo - Z/Bjxij) + )\Zﬁj

i=1 Jj=1 J=1

where X = 0 is a tuning (regularization) parameter, to be determined
later.
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Comments

n p p

A . 2 2

By = argmin (yi = Bo - Zﬁinj) +A Zﬂj.
B=(Bo;....Bp)ERPHL iT] j=1 j=1

«

RSS
: : : AR
@ We usually denote the ridge regression estimator by 3, , because

different \'s produce distinct estimators.

@ The term A Zle 51-2 is called a shrinkage / regularization penalty,
which shrinks the estimates of each j3; towards 0.

@ We usually do not penalize the intercept (.

@ Comparing to the OLS estimator, the ridge regression finds the
coefficient estimate of 3 that has small entries (toward 0) by
affording a slightly larger RSS. The balance is controlled by A.
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More Comments

@ Selecting a good value for A is critical. For A =0, the ridge estimator
of 3 coincides with the OLS estimator. Cross-validation could be
used to select .

@ In practice, we recommend the standardized predictors for ridge
regression, using the formula

_ Xij
- —.
\/; 27:1(Xij - Xj)2

All standardized predictors have standard deviation equal to one.

Xij
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Credit Card Data Example
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@ In the left-hand panel, each curve corresponds to the ridge regression coefficient estimate
for one of the 10 variables, plotted as a function of .

@ The right-hand panel displays the same ridge coefficient estimates as the left-hand panel,
but we now display ||,§§||2/||B||2, where 3 denotes OLS estimator.
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ression Improves Ov S in terms of MSE
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Squared bias (black), variance (green), and test mean squared error (purple) for the ridge
regression. The dashed lines indicate the smallest possible MSE.
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Advantages of Ridge Regression

@ Ridge does a better job for prediction than the OLS approach by
reducing the coefficient estimates.

» Ridge reduces the variance of fitted model by trading off the bias

@ Ridge regression is computationally efficient (for a given \),
comparable to the OLS approach.
In particular, it is (much) faster than the best subset selection.
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Limitation of Ridge Regression

e Can we use ridge regression for variable selection (excluding features
that are not important by setting their estimates to 0)?

No, it tends to include all p features in the fitted model!

So, the resulting fitted model is difficult to interpret.
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o Different from ridge, lasso shrinks the coefficients by penalizing their
absolute values. .
o Specifically, the lasso coefficients, 3, minimize the quantity

n P p
2
Z(y,' —Bo— ZBJ‘XU) + AZ e
i=1 j=1 j=1
where A = 0 is a tuning parameter, to be determined later.

o Different from the ridge regression that uses the ¢, penalty

P
1813 =) 5,
j=1
lasso uses the /1 penalty
P
18l = 181
j=1
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More Comments

@ Similar to ridge regression, the lasso shrinks the coefficient estimates
towards zero.

@ However, in the case of the lasso, the ¢; penalty has the effect of
forcing some of the coefficient estimates to be exact zero when the
tuning parameter A\ is sufficiently large.

@ Therefore, the lasso performs variable selection.

@ We say that the lasso yields a sparse model if the fitted model
involves only a subset of the variables.

@ Similar to ridge regression, selecting a good value of the
regularization parameter A for the lasso is critical; cross-validation is
again the method of choice.
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Credit Card Data Example
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Credit Card Data Example

Standardized Coefficients
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In the left-hand panel, each curve corresponds to the ridge regression coefficient estimate
for one of the 10 variables, plotted as a function of .

The right-hand panel displays the same ridge coefficient estimates as the left-hand panel,
but we now display ||,§§||2/||B||2, where 3 denotes OLS estimator.
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Magic of the Lasso

Why does the lasso, unlike ridge regression, yield coefficient estimates that
have exact zero?
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Another Formulation for Ridge Regression and Lasso

The lasso and ridge regression coefficient estimates solve the problems

P
mmlmlzez yi — Bo — Zﬁﬂw subject to Z 1Bi| <'s
j=1 j=1
and
2
p
mlmmlzez yi — Bo — Z,B].'L'U subject to Zﬂf <s,
Jj=1 j=1

Here s = 0 is some regularization parameter (connected with the original
A).
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Understand why the Lasso yields zero estimates

B2 B2

B1 B

The solid areas are the constraint regions, |31]| + |32| < s and Bf + ﬂ% <s,
while the red ellipses are the contours of the RSS.
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Lasso vs Ridge

@ The ability of yielding a sparse model is a huge advantage of Lasso
comparing to Ridge.

@ A more sparse model means more interpretability!

@ What about their prediction performance?
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Comparing the MSE of Lasso and Ridge
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Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso on a
simulated data set.

Right: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge
(dotted). Both are plotted against their R? on the training data, as a common form of indexing.
The crosses in both plots indicate the lasso model for which the MSE is smallest.

@ When the true coefficients are non-sparse, ridge and lasso have the same bias but ridge
has a smaller variance hence a smaller MSE.
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Another Case
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o When the true coefficients are sparse, Lasso outperforms ridge
regression of having both a smaller bias and a smaller variance.
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Conclusions on Lasso relative to Ridge

@ These two examples illustrate that neither ridge regression nor the
lasso will universally dominate the other.

@ In general, one might expect the lasso to perform better when the
response is only related with a relatively small number of predictors.

@ As the ridge regression, when the OLS estimates have excessively high
variance, the lasso solution can yield a reduction in variance at the
expense of a small increase in bias, and consequently can lead to
more accurate predictions.

@ Unlike ridge regression, the lasso performs variable selection, and
hence yields models that are easier to interpret.
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A simple example of the shrinkage effects of ridge and lasso

@ Assume that n = p and X =1,,. We force the intercept term Sy = 0.
@ In this way,

" b1 €1

Pl |

Yp Bp €p
@ We assume

2 2 .
j]=07 V_jE[p].
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The OLS estimator

@ The OLS approach is to find f31,..., 3, that minimize

d 2
(vj = B)".
j=1

This gives the OLS estimator

~

Bi=yi  Vjie{l,....p}
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The ridge estimator

@ The ridge regression is to find 31, ..., 3, that minimize

a 2 a 2
> (=B + 1) B
j=1 J=1

This leads to the ridge estimator

/Bj 1+)\7 VJG{l,,p}

Since A = 0, the magnitude of each estimated coefficient is shrinked
toward 0.
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The lasso estimator

@ The lasso is to find 3y, ..., 3, that minimize

P ) P
Y =B+ 1Y 15
j=1 J=1

This gives estimator
yi — A2 ify; > M2
Bf =y + A2 ify; <—-M/2%
0 i [y;] < A/2.
The estimated coefficients from Lasso are also shrinked. The above
shrinkage is known as the soft-thresholding.
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An illustrative figure
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Bias and Variance of the OLS

Recall
yj = Bj +¢€j, vje[pl

For any j € [p], the OLS estimator Bj = y; satisfies

o Bias: A
E[5;] = E[y;] = E[B; + ¢;] = B

@ Variance:
Var(f3;) = Var(ej) = o’
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MSE of the OLS

@ Mean squared error of the jth coefficient:

~ 2 ~ 2 ~ 2
E[(3-5)] = (BL41-5) +Var(B) = o
@ Mean squared error of all p coefficients:

P N 2 2
E{ (Bj_ﬂj):l=PU-
-

J
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Bias and Variance of the Ridge

Recall
yj =B+ ¢, vj € [p]
For any j € [p], the ridge estimator with tuning parameter ),

AR= .yj
J 1+ )\

satisfies

o Bias:

@ Variance:

Var(3;°) = Var ( 1 ij,\> e i )2
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MSE of the ridge

@ Mean squared error of the jth coefficient:
AR 2 AR 2 AR
E[(3f - 5)| = (BIAF1- ;) + var(5)

~ /B_] 2 J2
_(1+)\_ﬁj) * (1+))2
N3} o°

T A2 e

Recall that E[(3; — §;)°] = o°.

@ Mean squared error of all p coefficients:

E[i (35 - 5-)2} R
J J .

= (1+))?
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On selecting the tuning parameter

@ Similar as the subset selection, for ridge and lasso, we require a
systematic way of choosing the best model under a sequence of fitted
models (from different choices of \)

» Equivalently, we require a method to select the optimal value of the
tuning parameter \.

@ Cross-validation: we choose a grid of A\, and compute the
cross-validation error rate for each value of \.

@ We then select the A, for which the cross-validation error is smallest.

o Finally, the model is re-fitted by using all of the available observations
and the selected \,.
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Credit Card Data Example
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Cross-validation errors that result from applying ridge regression to the
Credit data set for various choices of A.
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More choices of penalties

@ There are many other penalties in addition to the ¢, and ¢; norms
used by ridge and lasso.

» the elastic net:

argmin lly = XBll5 + AL(1 = )|18ll1 + allBll2]

for some tuning parameters A = 0 and « € [0,1].

» The ridge corresponds to o = 1
» The Lasso corresponds to o = 0.
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The group lasso

» If we suspect the model is nonlinear in X; or X5, we can add quadratic
terms, say

Y = By + BiXy + BoXi + B3 Xo + BaX3 + €.

The group lasso estimator minimizes

RSS + A (VBT + 52 + /52 + 7).
In this penalty, we view 81 and 3, (coefficient of X; and X12) as if they
belong to the same group. The group Lasso can shrink the parameters

in the same group (both $; and ;) exactly to 0 simultaneously.

» There are a lot more penalties out there ......
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Regularization in more general settings

@ The ridge and lasso regressions are not restricted to the linear models.

@ The idea of penalization is generally applicable to almost all
parametric models.

B, = argmin L(,@,Dtrai") + A\ Pen(3).
5 ,

g(B:D"")

OLS: L(B,D"") = |ly - X5||§,2Pen<ﬁ> =0.
Ridge: L(8,D"™") = |ly - XBIl3, Pen(8) = 18]I3.

Lasso: L(B,D"™") = |ly = XBII3, Pen(8) = ||l
In principal,

vy VvV VY

» L can be any loss function, i.e. negative likelihood, 0-1 loss.
» Pen could be any penalty function.

Stat methods for ML (UofT) STA314-Lec4 35 /35



