
STA 314: Statistical Methods for Machine Learning I

Lecture 3 - Model selection under linear model
Cross-validation

Xin Bing

Department of Statistical Sciences
University of Toronto

Stat methods for ML (UofT) STA314-Lec3 1 / 46



Review

We have learned the OLS approach:

β̂ = argmin
α

∥y − Xα∥2
2.

We have learned the statistical properties of β̂ under the linear model

Y = β0 + X1β1 +⋯+ Xpβp + ε.

▶ Unbiasedness
▶ Estimation error (`2-norm)
▶ Inference (confidence intervals, hypothesis testing).
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Why consider alternatives to the OLS estimator?

Alternative fitting procedures to OLS:

prediction / estimation: the OLS estimator

β̂ = (X
⊤

X)−1
X

⊤
y

has large variance when p is large. Especially, if p > n, then OLS
estimator is not unique and its variance is infinite.

interpretability: By removing irrelevant features – that is, by setting
some coefficient estimates to zero – we can obtain a model that is
more parsimonious hence more interpretable.
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What are the alternatives?

1. Subset Selection. We identify a subset of the p predictors that we
believe to be related to the response. We then fit a model using the
OLS approach on the identified set of predictors.

2. Shrinkage. We fit a model involving all p predictors, but the
estimated coefficients are shrunken towards zero relative to the OLS
estimator. This shrinkage (also known as regularization) has the effect
of reducing variance. Some could also perform variable selection.

3. Dimension Reduction. We project the p predictors into a
M-dimensional subspace, where M < p. This is achieved by
computing M different linear combinations, or projections, of the
original predictors. Then the resulting M projections are used as new
predictors to fit a linear regression model by OLS.
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How to choose the optimal one among a set of models?

Example

Model 1: Y = α0 + α1X1 + ε

Model 2: Y = β0 + β1X1 + β2X2 + ε

lead to different predictors at X = x = (x1, x2)

f̂1(x) = α̂0 + α̂1x1 v.s. f̂2(x) = β̂0 + β̂1x1 + β̂2x2.

Ideally, we choose the one that has a smaller expected MSE.
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How to compare expected MSEs?

When we have Dtest , we compare the test MSE errors directly

1
m

m

∑
i=1

(y (T )
i − α̂0 − α̂1x

(T )
i1 )

2

v.s.
1
m

m

∑
i=1

(y (T )
i − β̂0 − β̂1x

(T )
i1 − β̂2x

(T )
i2 )

2

What if we don’t have Dtest?
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Model selection

There are two common approaches for model selection when we don’t
have Dtest :

We can directly estimate the expected MSE by manually creating a
“test set” using data-splitting techniques:

▶ validation set approach
▶ cross-validation approach

We can avoid estimating the expected MSE by making an adjustment
to the training error to account for the model complexity:

▶ Mallow’s Cp

▶ adjusted R
2

▶ AIC & BIC
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Direct estimation of the expected MSE:
data-splitting techniques

We randomly split the available data to create a validation set that
functions as a test set.

Validation set approach: one-time data splitting

Cross-validation approach: multiple-time data splitting
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Validation set approach

Randomly divide the available set of samples into two parts: a
training set and a validation (hold-out) set.

▶ What is the proportion? Depends.

The model is fitted on the training set, and the fitted model is
evaluated by the validation set.

The resulting validation-set MSE provides an estimate of the
expected MSE.
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Example: Auto Data

In Lecture 2, we find there appears to be a non-linear relationship between
mpg and horsepower.

Whether a cubic or higher-order predictor provides a better fit?
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Example: Auto Data – Compare linear vs higher-order
polynomial terms in a linear regression.

We randomly split the 392 observations into two sets, a training set
containing 196 of the data points, and a validation set containing the
remaining 196 data.

Left: Validation error estimates for a single split into training and validation data sets.

Right: Validation method repeated 10 times with each time using a different random split
of the observations into a training set and a validation set.

We can see the one-time data splitting is not stable
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Drawbacks of Validation Set Approach

The validation estimate of the test error can be highly unstable,
depending on which observations are included in the training set and
which are in the validation set.

Only a subset of the observations – those in the training set rather
than in the validation set – are used to fit the model.

This suggests that the validation set error may tend to overestimate
the test error for the model fit on the entire data set.

How to remedy these drawbacks?

Stat methods for ML (UofT) STA314-Lec3 12 / 46



Leave-One-Out Cross-Validation (LOOCV)

First split the data into two parts by leaving out the first observation:

▶ a validation set: (x1, y1)

▶ a training set: the remaining observations (x2, y2), ..., (xn, yn)

▶ using the training set, we fit the model f̂1 and predict y1 as f̂1(x1)
using the value x1. The test error could be approximated by

MSE1 = (y1 − f̂1(x1))2
.

▶ not good enough!
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Leave-One-Out Cross-Validation

Repeat the procedure by leaving out the second observation:
▶ a validation set: (x2, y2),
▶ a training set: the remaining observations (x1, y1), (x3, y3), ..., (xn, yn)
▶ using the training set, we fit the model f̂2 and predict y2 as f̂2(x2)

using the value x2. Compute

MSE2 = (y2 − f̂2(x2))2
.

Repeating the approach n times by leaving out each observation to
obtain MSE1, ...,MSEn.

The LOOCV estimate for the test MSE is the average of these n test
error estimates:

CV(n) =
1
n

n

∑
i=1

MSEi .
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Leave-One-Out Cross-Validation

Validation data sets in beige, and training sets in cyan.
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LOOCV vs Validation Set Approach

LOOCV has the following advantage over the validation set approach.

The training set of LOOCV is almost the same as the entire data set.
The fitted model is almost as good as that based on the entire data
set.

The validation approach yields different results when applied
repeatedly, because the training/validation set is randomly divided.
LOOCV has no randomness in the splitting.

However, LOOCV can be computationally expensive in general.
1

1
In linear model, the computation can be simplified, the formula is shown in page

202 of the textbook.
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k-Fold Cross-Validation

k-fold CV is to randomly divide the data into k (roughly) equal-sized
groups or folds.

The first fold is treated as a validation set, and the method is fit on
the remaining k − 1 folds. We compute the mean squared error,
MSE1, for the observations in the first fold.

Then we repeat the procedure to fold 2, fold 3,..., fold k , and get
MSE2, MSE3,...,MSEk .

The k-fold CV estimate is computed by averaging these values,

CV(k) =
1

k

k

∑
i=1

MSEi .

Remark

LOOCV is a special case of n-fold CV.

5-fold or 10-fold is commonly used in practice.
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k-Fold Cross-Validation

Validation data sets in beige, and training sets in blue.

Stat methods for ML (UofT) STA314-Lec3 18 / 46



k-Fold Cross-Validation

True test MSE (in blue), the LOOCV estimate (black dashed line), and
the 10-fold CV estimate (in orange) for three simulated data sets.
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Cross-Validation on Classification Problems

Cross-validation also works for classification problems.

For LOOCV, we split the data in the same way as before. We
compute the error on the validation set

Err1 = 1 {y1 ≠ f̂ (x1)} .

Then we repeat the procedure n times, and get Err2, Err3,...,Errn.

The LOOCV estimate is computed by averaging these values,

CV(n) =
1
n

n

∑
i=1

Errn.
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Cross-Validation is sometimes tricky!

Independence between the fitted model and the validation set is the key!
Meaning that you should NOT use the validation set to fit your model.

Example (A tricky one)

Consider a simple two-step approach applied to some data Dtrain
.

Starting with 5000 predictors and 100 samples, find the 10 predictors
having the largest correlation with the outcome.

We then apply the OLS using only these 10 predictors.

How do we estimate the expected MSE of the fitted model from this
approach?
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Avoid estimating the expected MSE:

Cp, AIC, BIC, and adjusted R
2

These techniques adjust the training error for the model complexity.

They are limited to
▶ parametric models such as linear model
▶ models where the data likelihood is correctly specified
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Cont’d: Avoid estimating the expected MSE

For any given fitted model f̂ , let f̂ (xi) be the fitted value for the i the
observation. For instance, for a fitted linear model with p predictors,

f̂ (xi) = x
⊤
i β̂ = β̂0 + β̂1xi1 +⋯+ β̂pxip.

Recall that yi − f̂ (xi) is the ith residual. The residual sum of squares
(RSS) is defined as

1
nRSS(f̂ ) =

1
n

n

∑
i=1

(yi − f̂ (xi))
2
.

Yes, this is indeed the training MSE of f̂ ! It gets smaller as p
increases.
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Mallow’s Cp

Let p be the total # of parameters in the model

Cp(f̂ ) =
1
nRSS(f̂ ) +

2pσ
2

n .

When σ
2

is unknown, one use a consistent estimator σ̂
2
.

Cp adds a penalty 2pσ̂
2/n to the training MSE to adjust for the fact

that the training error is always in favor of more complex models.

we choose the model with the lowest Cp value.

Cp is mainly for selecting linear predictors in regression.
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Adjusted R
2

Recall that the total sum of squares (TSS) is defined as

TSS =
n

∑
i=1

(yi − ȳ)2
, ȳ =

1
n

n

∑
i=1

yi .

Recall that

R
2(f̂ ) = TSS − RSS(f̂ )

TSS
= 1 −

RSS(f̂ )
TSS

.

By contrast,

Adjusted R
2(f̂ ) = 1 −

RSS(f̂ )/(n − p − 1)
TSS/(n − 1) .

Remark. Unlike the R
2

statistic, the adjusted R
2

statistic pays a price for
the inclusion of unnecessary variables in the model.
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Adjusted R
2

vs R
2

Adjusted R
2(f̂ ) = 1 −

RSS(f̂ )/(n − p − 1)
TSS/(n − 1) .

Note

argmax
f̂

Adjusted R
2(f̂ ) = argmin

f̂

RSS(f̂ )
n − p − 1

.

While RSS always decreases as p increases, RSS/(n − p − 1) may
increase or decrease.

A larger value of adjusted R
2

indicates a model with smaller test
error.

Both Cp and adjusted R
2

are restricted to selection of linear models.
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AIC and BIC

Let f̂ be the fitted model obtained from the MLE approach so that L(f̂ ) is
the maximum of the likelihood function.

AIC:
AIC(f̂ ) = −2 log L(f̂ ) + 2p,

In the linear model with εi
i .i .d .
∼ N (0, σ

2), AIC(f̂ ) is proportional to
Cp(f̂ ), selecting the same model.

BIC:
BIC(f̂ ) = −2 log L(f̂ ) + (log n)p,

BIC places a heavier penalty (log n)p on models with many predictors,
and hence results selecting smaller-size models than AIC and Cp.
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AIC and BIC

For both AIC and BIC, we select the best model that has the lowest
value.

To compute AIC and BIC, we need to specify the likelihood, i.e. the
distribution of Y ∣ X , and to compute the maximum likelihood
estimator.

AIC and BIC can also be used for selecting parametric models in
classification problems.
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Example (Revisited)

Model 1: Y = α0 + α1X1 + ε

Model 2: Y = β0 + β1X1 + β2X2 + ε

lead to different predictors at X = x = (x1, x2)

f̂1(x) = α̂0 + α̂1x1 v.s. f̂2(x) = β̂0 + β̂1x1 + β̂2x2.

Their residual sum of squares (RSS) can be computed as:

RSS(f̂1) =
n

∑
i=1

(yi − α̂0 − α̂1xi1)2

RSS(f̂2) =
n

∑
i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2)
2
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Mallow’s Cp, AIC, BIC and adjusted R
2

Mallow’s Cp

Cp(f̂1) =
1
n (RSS(f̂1) + (2 × 1)σ2)

Cp(f̂2) =
1
n (RSS(f̂2) + (2 × 2)σ2) .

Adjusted R
2

Adjusted R
2(f̂1) = 1 −

RSS(f̂1)/(n − 2)
TSS/(n − 1)

Adjusted R
2(f̂2) = 1 −

RSS(f̂2)/(n − 3)
TSS/(n − 1) .
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Discussion / recommendation on these two approaches

The data-splitting technique has two advantages relative to Cp,

adjusted R
2
, AIC and BIC, :

▶ it provides a direct estimate of the test error

▶ It can also be used in a wider range of model selection tasks, even in
cases where it is hard to pinpoint the model degrees of freedom (e.g.
the number of predictors in the model) or hard to estimate the error
variance.

The data-splitting technique also has a couple of drawbacks
comparing to the other approach:

▶ it requires a relatively large sample size
▶ it is difficult to have guarantees for the model selected by using CV.
▶ when the distribution is specified and the error of variance can be

consistently estimated, the first approach is preferred.
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What’s next?

Apply these two techniques
for model selection under linear models.
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Application to model selection in linear models

Alternatives to the OLS using all predictors:

Subset Selection. Identify a subset of the p predictors that we
believe to be related to the response. Then fit the model by using the
identified predictors via OLS.

▶ Best Subset Selection
▶ Stepwise Selection

Shrinkage Regression
▶ Ridge
▶ Lasso

Dimension Reduction. Later after PCA.
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Best Subset Selection

Example

Suppose we have access to i.i.d. samples of the response Y and the
features

X = (X1,X2,X3).
For fitting a regression that is linear in X , what are the all possible subsets?
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Best Subset Selection

Step 2 identifies the best model for each subset size. RSS can be used here. Why?

In Step 3, can we use RSS or R
2
?
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Best Subset Selection

The same approach can be used for other types of models, such as
logistic regression (RSS replaced by deviance).

However! For best subset selection, we need to fit and compare

(p0) + (p1) + (p2) +⋯+ (pp) = 2
p

models.
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Forward Stepwise Selection

Example (Revisited)

Suppose we have access to i.i.d. samples of the response Y and the
features

X = (X1,X2,X3).
What are the models we consider for forward stepwise?
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Forward Stepwise Selection
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Forward Stepwise Selection

Pros: It has computational advantage over best subset selection.
In the kth iteration, we fit and compare (p − k) models. In total,

1 +
p−1

∑
k=0

(p − k) = 1 +
p(p + 1)

2

models are considered, much fewer than 2
p

models.

Cons: It is a greedy procedure!
So not guaranteed to find the best possible model out of all 2

p

models containing subsets of the p predictors.
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The Credit Card Data
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Backward Stepwise Selection

Example (Revisited)

Suppose we have access to i.i.d. samples of the response Y and the
features

X = (X1,X2,X3).
What are the models we consider for backward stepwise?
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Backward Stepwise Selection
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Backward Stepwise Selection

For backward stepwise selection, we also compare 1 + p(p + 1)/2
models, much fewer than 2

p
models.

Still a greedy approach!
It is not guaranteed to find the best possible model out of all 2

p

models containing subsets of the p predictors.
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The Credit Card Data: best subset selection via Mallow’s

Cp, BIC and adjusted R
2
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The Credit Card Data: model selection via sample-splitting
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Summary on subset selection

Best subset selection will select the best model, as long as
computation is affordable.

Forward / Backward stepwise selection is computationally fast, but is
not guaranteed to find the best model.

What should we do in practice?
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