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Review

Supervised learning is about to estimate (learn) f under the
generating mechanism

Y = f (X ) + ε

For a given estimate f̂ of f , we have learned
▶ how to evaluate it
▶ and its expected MSE follows the bias-variance decomposition

Different f̂ ’s are different algorithms/methods/predictors:
▶ parametric methods
▶ non-parametric methods
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Linear regression

Let Y ∈ R be the outcome and X ∈ Rp
be the (random) vector of p

features.

The linear model assumes

Y = f (x) + ε
= β0 + β1X1 +⋯+ βpXp + ε (linearity of f )

where:

β0, β1,⋯, βp are unknown constants.
▶ β0 is called the intercept
▶ βj , for 1 ≤ j ≤ p, are the coefficients or parameters of the p features

ε is the error term satisfying E[ε] = 0.
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Linear predictor under the linear regression model

Given some estimates β̂j of βj for 0 ≤ j ≤ p, we predict the response at
any X = x by the linear predictor

f̂ (x) = β̂0 + β̂1x1 +⋯+ β̂pxp.

Question: how to choose β̂0, . . . , β̂p?
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Ordinary Least Squares approach (OLS)

Recall that we want to find a function g ∶ X → Y by

min
g

E [(Y − g(X ))2] .

Under linear model, it suffices to find g by

min
α0,...,αp

E [(Y − α0 − α1X1 −⋯− αpXp)2]

In the model fitting step, we use the training data to approximate the
above expectation (w.r.t. X and Y ).

Specifically, given Dtrain
, we choose

(β̂0,⋯, β̂p) = argmin
α0,⋯,αp

1
n

n

∑
i=1

(yi − α0 − α1xi1 −⋯− αpxip)2
.
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Ordinary Least Squares approach (OLS)

Using the matrix notation,

β̂ = [β̂0,⋯, β̂p]⊤ ∈ Rp+1
, β = [β0,⋯, βp]⊤ ∈ Rp+1

,

α = [α0,⋯, αp]⊤ ∈ Rp+1
,

y = [y1, . . . , yn]⊤ ∈ Rn
, X = [x1, . . . , xn]⊤ ∈ Rn×(p+1)

with

xi = [1, xi1, . . . , xip]⊤ ∈ Rp+1
for 1 ≤ i ≤ n.

the OLS estimator of β is defined as

β̂ = argmin
α∈Rp+1

1
n

n

∑
i=1

(yi − x
⊤
i α)

2

= argmin
α∈Rp+1

1
n∥y − Xα∥2

2.
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Comments

The idea of estimating f by minimizing the training MSE can be
applied to (almost) all supervised learning problems. Specifically,

f̂ = argmin
g∈F

1
n

n

∑
i=1

L(yi , g(xi)) (1)

where L(⋅, ⋅) is a loss function and F is a class of choices of g .

The OLS approach corresponds to L(a, b) = (a − b)2
and

F = {x↦ x
⊤
β ∶ β ∈ Rp+1} .

In general, the difficulty of solving (1) varies across problems. But,
the OLS approach admits a closed-form solution:

β̂ = (X
⊤

X)−1
X
⊤

y

whenever X ∈ Rn×(p+1)
has full column rank.
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What is random and what is not random?

In Statistics, we use capitalized letters for generic random variables (e.g. X
and Y ).

The parameters such as β1, . . . , βp or the function f ∶ X → Y are treated as
deterministic (non-random). Of course, being Bayesian is an exception.

The data points (xi , yi) for 1 ≤ i ≤ n are actual values, observed in practice.
They can be thought as the realizations of random variables (Xi ,Yi) for
1 ≤ i ≤ n.

When we talk about estimators (e.g. the OLS estimator) which, by
definition, are functions of (Xi ,Yi), hence are random.

Nevertheless, we will not distinguish between (xi , yi) and (Xi ,Yi)
throughout the lecture, but you should have in mind that the training data
(xi , yi) are random realizations.
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The randomness in β̂0 and β̂1

We cannot hope β̂0 = β0 and β̂1 = β1, because they depend on the
observed data which is random.

Left: The red line represents the true model f (X ) = 2 + 3X . The blue line is the OLS fit based
on the observed data.
Right: The light blue lines represent 10 OLS fits, each one computed on the basis of a different
training dataset.
The fitted OLS lines are different, but their average is close to the true regression line.
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Some important considerations

Estimation of β:

▶ How close is the point estimation β̂ to β?
▶ (Inference) Can we provide confidence interval / conduct hypothesis

testing of β?

Prediction of Y at X = x:

▶ How accurate is the point prediction f̂ (x) = x
⊤
β̂?

▶ (Inference) Can we further provide confidence interval of Y ?

Variable (Model) selection:

▶ Do all the predictors help to explain Y , or is there only a subset of the
predictors useful?

▶ Later in Lecture 3
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Property of β̂ = (X
⊤

X)−1
X
⊤

y

Take the design matrix X ∈ Rn×(p+1)
to be deterministic with full column

rank. Assume ε1, . . . , εn are i.i.d. realizations of ε.

Unbiasedness: E[β̂] = β

The covariance matrix of β̂ is:

Cov(β̂) = σ2(X
⊤

X)−1

The above two properties imply the `2 estimation error

E [∥β̂ − β∥2
2] = σ2

trace [(X
⊤

X)−1]

When X
⊤

X = n Ip+1,

E [∥β̂ − β∥2
2] =

σ
2(p + 1)

n .

The MSE of estimating β increases as p gets larger.
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