STA 314: Statistical Methods for Machine Learning I

Lecture 2 - Linear regression

Xin Bing

Department of Statistical Sciences University of Toronto

Review

 Supervised learning is about to estimate (learn) f under the generating mechanism

$$Y = f(X) + \epsilon$$

- ullet For a given estimate \hat{f} of f, we have learned
 - how to evaluate it.
 - ▶ and its expected MSE follows the bias-variance decomposition
- Different \hat{f} 's are different algorithms/methods/predictors:
 - parametric methods
 - non-parametric methods

Linear regression

Let $Y \in \mathbb{R}$ be the outcome and $X \in \mathbb{R}^p$ be the (random) vector of p features.

The linear model assumes

$$Y = f(x) + \epsilon$$

= $\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$ (linearity of f)

where:

- $\beta_0, \beta_1, \dots, \beta_p$ are unknown constants.
 - β_0 is called the **intercept**
 - ▶ β_j , for $1 \le j \le p$, are the **coefficients** or **parameters** of the *p* features
- ϵ is the error term satisfying $\mathbb{E}[\epsilon] = 0$.

Linear predictor under the linear regression model

Given some estimates $\hat{\beta}_j$ of β_j for $0 \le j \le p$, we predict the response at any $X = \mathbf{x}$ by the linear predictor

$$\hat{f}(\mathbf{x}) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p.$$

Question: how to choose $\hat{\beta}_0, \ldots, \hat{\beta}_p$?

Ordinary Least Squares approach (OLS)

Recall that we want to find a function $g: \mathcal{X} \to \mathcal{Y}$ by

$$\min_{g} \mathbb{E}\left[\left(Y - g(X)\right)^{2}\right].$$

Under linear model, it suffices to find g by

$$\min_{\alpha_0,\dots,\alpha_p} \mathbb{E}\left[\left(Y - \alpha_0 - \alpha_1 X_1 - \dots - \alpha_p X_p\right)^2\right]$$

In the **model fitting step**, we use the training data to approximate the above expectation (w.r.t. X and Y).

Specifically, given \mathcal{D}^{train} , we choose

$$(\hat{\beta}_0, \dots, \hat{\beta}_p) = \underset{\alpha_0, \dots, \alpha_p}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n (y_i - \alpha_0 - \alpha_1 x_{i1} - \dots - \alpha_p x_{ip})^2.$$

Ordinary Least Squares approach (OLS)

Using the matrix notation,

•
$$\hat{\boldsymbol{\beta}} = [\hat{\beta}_0, \dots, \hat{\beta}_p]^{\top} \in \mathbb{R}^{p+1}, \ \boldsymbol{\beta} = [\beta_0, \dots, \beta_p]^{\top} \in \mathbb{R}^{p+1},$$

 $\boldsymbol{\alpha} = [\alpha_0, \dots, \alpha_p]^{\top} \in \mathbb{R}^{p+1},$

•
$$\mathbf{y} = [y_1, \dots, y_n]^{\top} \in \mathbb{R}^n$$
, $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^{\top} \in \mathbb{R}^{n \times (p+1)}$ with $\mathbf{x}_i = [1, x_{i1}, \dots, x_{ip}]^{\top} \in \mathbb{R}^{p+1}$ for $1 \le i \le n$.

the OLS estimator of β is defined as

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\alpha} \in \mathbb{R}^{p+1}}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \mathbf{x}_i^{\top} \boldsymbol{\alpha} \right)^2$$
$$= \underset{\boldsymbol{\alpha} \in \mathbb{R}^{p+1}}{\operatorname{argmin}} \ \frac{1}{n} ||\mathbf{y} - \mathbf{X} \boldsymbol{\alpha}||_2^2.$$

Comments

 The idea of estimating f by minimizing the training MSE can be applied to (almost) all supervised learning problems. Specifically,

$$\hat{f} = \underset{g \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, g(\mathbf{x}_i))$$
 (1)

where $L(\cdot, \cdot)$ is a loss function and \mathcal{F} is a class of choices of g.

• The OLS approach corresponds to $L(a, b) = (a - b)^2$ and

$$\mathcal{F} = \left\{ \mathbf{x} \mapsto \mathbf{x}^{\top} \boldsymbol{\beta} : \boldsymbol{\beta} \in \mathbb{R}^{p+1} \right\}.$$

 In general, the difficulty of solving (1) varies across problems. But, the OLS approach admits a closed-form solution:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

whenever $\mathbf{X} \in \mathbb{R}^{n \times (p+1)}$ has full column rank.

What is random and what is not random?

- In Statistics, we use capitalized letters for generic random variables (e.g. X and Y).
- The parameters such as β_1, \dots, β_p or the function $f : \mathcal{X} \to \mathcal{Y}$ are treated as deterministic (non-random). Of course, being Bayesian is an exception.
- The data points (\mathbf{x}_i, y_i) for $1 \le i \le n$ are actual values, observed in practice. They can be thought as the <u>realizations of random variables</u> (X_i, Y_i) for $1 \le i \le n$.
- When we talk about estimators (e.g. the OLS estimator) which, by definition, are functions of (X_i, Y_i) , hence are random.
- Nevertheless, we will not distinguish between (\mathbf{x}_i, y_i) and (X_i, Y_i) throughout the lecture, but you should have in mind that the training data (\mathbf{x}_i, y_i) are random realizations.

The randomness in $\hat{\beta}_0$ and $\hat{\beta}_1$

We cannot hope $\hat{\beta}_0 = \beta_0$ and $\hat{\beta}_1 = \beta_1$, because they depend on the observed data which is random.

Left: The **red line** represents the true model f(X) = 2 + 3X. The **blue line** is the OLS fit based on the observed data.

Right: The light blue lines represent 10 OLS fits, each one computed on the basis of a different training dataset.

The fitted OLS lines are different, but their average is close to the true regression line.

Some important considerations

- Estimation of β :
 - ▶ How close is the point estimation $\hat{\beta}$ to β ?
 - (Inference) Can we provide confidence interval / conduct hypothesis testing of β ?
- Prediction of Y at $X = \mathbf{x}$:
 - ▶ How accurate is the point prediction $\hat{f}(\mathbf{x}) = \mathbf{x}^{\top} \hat{\boldsymbol{\beta}}$?
 - ▶ (Inference) Can we further provide confidence interval of *Y*?
- Variable (Model) selection:
 - ▶ Do all the predictors help to explain *Y*, or is there only a subset of the predictors useful?
 - Later in Lecture 3

Property of $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$

Take the *design matrix* $\mathbf{X} \in \mathbb{R}^{n \times (p+1)}$ to be deterministic with full column rank. Assume $\epsilon_1, \ldots, \epsilon_n$ are i.i.d. realizations of ϵ .

- Unbiasedness: $\mathbb{E}[\hat{\beta}] = \beta$
- The covariance matrix of $\hat{\beta}$ is:

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}$$

ullet The above two properties imply the ℓ_2 estimation error

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right\|_2^2\right] = \sigma^2 \mathrm{trace}\left[\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\right]$$

When $\mathbf{X}^{\mathsf{T}}\mathbf{X} = n \mathbf{I}_{p+1}$,

$$\mathbb{E}\left[\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|_{2}^{2}\right]=\frac{\sigma^{2}(p+1)}{n}.$$

The MSE of estimating β increases as p gets larger.