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What is machine learning?

Machine learning approach: program an algorithm to automatically
learn from data, or from experience

Why might you want to use a learning algorithm?
▶ hard to code up a solution by hand (e.g. vision, speech)

▶ system needs to adapt to a changing environment (e.g. spam detection)

▶ want the system to perform better than the human programmers
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Types of machine learning problems

Supervised
Learning

Machine is given data
and examples of what

to predict.

Unsupervised
Learning

Machine is given data,
but not what to predict.

Reinforcement
Learning

Machine gets data by
interacting with an

environment and tries
to minimize a cost.
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Supervised Learning

Outcome measurement Y (also called dependent variable, response,
target).

Vector of p predictor measurements X (also called inputs, regressors,
covariates, features, independent variables).

In regression problems, Y is quantitative (e.g price, blood pressure).

In classification problems, Y takes values in a finite, unordered set
(survived/died, digit 0-9, cancer class of tissue sample).

We have training data (x1, y1), ..., (xn, yn). These are observations
(instances, realizations) of the measurement (X ,Y ).
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Main tasks in Supervised Learning

On the basis of the training data we would like to:

Prediction: accurately predict future outcome (Y ).

Estimation: understand how features (X ) affect the outcome (Y ).

Model selection: find the best model for predicting the outcome (Y )
or which features (X ) affect the outcome (Y ).

Inference: assess the quality of our prediction, estimation and model
selection.
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Spam emails detection

data from n = 4601 emails sent to an individual (named George, at
HP labs). Each is labeled Y ∈ {spam, email}.

goal: build a customized spam filter

input features X : relative frequency of 57 words and punctuation
marks in the email message

george you hp free ! edu remove

spam 0.00 2.26 0.02 0.54 0.51 0.01 0.28
email 1.27 1.27 0.90 0.07 0.11 0.29 0.01
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Image recognition

For image data, we observe n images with annotated labels

yi ∈ {cat, dog, hat, mug}, 1 ≤ i ≤ n.

What an image looks like to the computer:

[Image credit: Andrej Karpathy]
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Image recognition

Features xi are represented as a vector

The goal is to let the machine learn the function f ∶ xi → yi to predict the labels
for unanotated images.
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Detect numbers in a handwritten zip code
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Recommender Systems : Amazon, Netflix, ...
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Computer vision: Object detection, semantic
segmentation, pose estimation, and almost every other
task is done with ML.
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Object detection
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Speech: speech to text, personal assistants, speaker
identification...

Stat methods for ML (UofT) STA314-Lec1 13 / 54



Unsupervised Learning

No outcome variable Y , just a set of features X measured on a set of
samples.

objective is more fuzzy – find groups of samples that behave similarly,
find features that behave similarly, find linear combinations of features
with the most variation.

difficulty in model assessment: difficult to quantify how well you are
doing.

different from supervised learning, but can be useful as a
pre-processing step for supervised learning.
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Image segmentation
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Natural language processing: machine translation,
sentiment analysis, topic modelling.
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An example of Reinforcement Learning

DOTA2 - Link
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https://youtu.be/IbaHI38Ewws?t=36


Introduction to Supervised Learning

Today (and for much of this course) we focus on supervised learning:
where we are given

training set {(y1, x1), . . . , (yn, xn)} consisting of n samples of
▶ features x1, . . . , xn ∈ X and corresponding
▶ outcome y1, . . . , yn ∈ Y.

Our goal is to learn a predictor (function / mapping) g : X → Y such that

for a new test data x∗ ∈ X ,

g(x∗) ≈ y∗.

What is the intuition?
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Introduction to Supervised Learning

Mathematically, write the underlying generating mechanism between Y
and X as

Y = f (X ) + ε
where ε represents some measurement errors and other discrepancies.

We are given the training data Dtrain
consisting of n i.i.d. samples of

(X ,Y ) following the above model, that is, (x1, y1), . . . , (xn, yn).

Our goal is to estimate / learn the mapping / function f based on Dtrain
.
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Why estimate f ?

Prediction: Given a new point X = x , f (x) is typically a good
prediction, and it is in fact the best prediction one can hope for with
respect to certan criterion.

Feature selection: Understand which components of
X = (X1,X2, ...,Xp) are important / irrelevant in explaining Y .
E.g.

f (X1,X2,X3) = 0.5 + 4X1 + X
2
1 − 2X

3
2 .
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A Textbook Example: Sales prediction and inference

We are given information of n products: each of them consists

yi : Sales of product i in 200 different markets

xi1: TV budget of product i

xi2: radio budget of product i

xi3: newspaper budget of product i

Suppose the true generating model is

Y = f (X ) + ε = β0 + β1X1 + β2X2 + β3X3 + ε.

Knowing f helps to understand how Sales changes if one increases one
unit of TV budget (X1).
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How to estimate f ?

Notation:

Let xij denote the value of the jth feature for observation i , where
i = 1, 2, ..., n and j = 1, 2, ..., p.

Let yi denote the response variable for the ith observation.

Training data consist of Dtrain
= {(x1, y1), ..., (xn, yn)}, where

xi = (xi1, ...., xip)T .

Two categories of approaches to estimate f based on Dtrain
:

Parametric method

Non-parametric method
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Parametric approach

Assume parametric form of f , i.e. assuming f is a function of certain
parameters.

Example (Linear model / predictor)

The linear model is an important example of a parametric model:

Y = f (X ) + ε, with f (X ) = β0 + β1X1 + β2X2 +⋯+ βpXp.

Correspondingly, we would estimate f by

f̂linear(X ) = β̂0 + β̂1X1 +⋯+ β̂pXp.

Remark: constructing f̂linear reduces the problem of estimating a function
to that of estimating (p + 1) parameters (β0, β1, . . . , βp).
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More on linear model

f̂linear(X ) = β̂0 + β̂1X1 +⋯+ β̂pXp.

The procedure of obtaining β̂0, . . . , β̂p is called fitting, i.e. fitting the
model to the training data.

Even for the same parametric model, there are different ways of
fitting (algorithms)! We will get back to this later.
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A toy example of linear predictor

A fitted linear model f̂linear(X ) = β̂0 + β̂1X via the least squares approach.

A more flexible model f̂quad(X ) = β̂0 + β̂1X + β̂2X
2

gives a slightly better
fit
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More (complex) parametric methods

As we have seen, if the linear predictor does a poor job for fitting the data,
one can consider more complex forms of f , such as:

Quadratic form: f (X ) = β0 + β1X + β2X
2

Step-wise form: f (X ) = β0 + β11{X <= 0.5} + β21{X > 0.5}.

Polynomial form: f (X ) = β0 + β1X + β2X
2 +⋯+ βdX

d

Two layer neural net: f (X ) = σ (W1σ(W0X + b0) + b1)
You can keep adding complexity by considering more complicated f

Remark: f gets less interpretable as its form gets more complicated!
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Trade-off between complexity and interpretability

Model complexity (fitting flexibility) versus interpretability.

The more complex, the more flexible to fit f , but less interpretable.

Linear models are easy to interpret; neural nets are not.

Interpretation means to understand how the predictors X contribute
to predicting Y .
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Non-parametric method

Make no / little assumption on f .

Example (Nearest neighbours)

To predict at X = x with N (x) being some neighborhood of x ,

f̂ (x) = 1

∣N (x)∣ ∑
i∶xi∈N (x)

yi .
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General comments on non-parametric methods

More sophisticated versions, e.g. kernel estimator, spline estimator.

Pros:
▶ little assumption on f
▶ good prediction for large n and small p, e.g. p ≤ 4.

Cons:
▶ Poor performance when p is large.
▶ Curse of dimensionality: There are very few data points in the nearby

neighbors when p is large.
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Curse of Dimensionality
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Model selection

How do we choose the best model?

parametric vs parametric

parametric vs non-parametric

non-parametric vs non-parametric

We need a systematic way of choosing the best f̂ among a set of f̂ ’s.

What is a good metric for evaluating any given f̂ ?

We start with the regression problems where Y is quantatitive.
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Metric of f̂ for regression problems

Recall the setup:
Y = f (X ) + ε

and Dtrain
contains n i.i.d. samples of (X ,Y ).

Given any f̂ , ideally, we want to evaluate f̂ by the expected mean
squared error (MSE)

E [(Y∗ − f̂ (X∗))
2]

where

(X∗,Y∗) is a new random pair that is independent of Dtrain
.

the expectation is taken w.r.t. the random pair (X∗,Y∗) as well as
the randomness in f̂ .
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Metric of f̂

We cannot compute the expected MSE as we do not know either the
distribution of (X∗,Y∗) or that of Dtrain

.

One natural option is to use Dtrain
to approximate the expectation by

MSE(f̂ ) ∶= 1
n

n

∑
i=1

(yi − f̂ (xi))
2
.

This is called the training MSE as it uses Dtrain
.

However, it is NOT a valid metric of the fit for f̂ .

It always favors more complex f̂ ’s.
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Metric of f̂

Test data refers to the data which is not used to train the statistical
model (i.e., not used to compute f̂ ).

Test MSE. Suppose we have the test data Dtest containing
{(xT1, yT1), ..., (xTm, yTm)}

MSET (f̂ ) = 1
m

m

∑
i=1

(yTi − f̂ (xTi))2
.

Instead of using the training MSE, we should look at the test MSE.
We’d like to select the model which yields the smallest test MSE.

How to calculate MSET (f̂ )?
▶ If test data is available, we can directly compute MSET (f̂ ).
▶ Otherwise, we use a resampling technique called cross-validation (later

in Lecture 3).
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Training MSE vs Test MSE

Left: Data simulated from f , shown in black. Three estimates of f are shown: the linear
regression line (orange curve), and two nonparametric fits (blue and green curves).

Right: Training MSE (grey curve), test MSE (red curve), and minimum test MSE over all
possible methods (dashed line).
Squares represent the training and test MSEs for the three fits shown in the LHS panel.
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Training MSE vs Test MSE: a linear f

When f is close to linear, the linear predictor provides a very good fit to
the data.
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Training MSE vs Test MSE: a highly non-linear f

When f is highly non-linear, the linear predictor provides a very poor fit to
the data.
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Overfitting

Training MSE

MSE(f̂ ) ∶= 1
n

n

∑
i=1

(yi − f̂ (xi))
2
.

decreases as f̂ gets more complex.

f̂ is typically obtained by minimizing MSE(g) over all possible g in
the specified model class.

A highly complex f̂ can lead to a phenomenon known as overfitting the
data, which essentially means it follows the noise ε too closely.

A simple example of overfitting: f̂ (xi) = yi for all 1 ≤ i ≤ n.
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Simulated example

Red points are simulated values for income from the model

income = f (education, seniority) + ε

where f is the blue surface.
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Example

Linear regression model

f̂linear(education, seniority) = β̂0 + β̂1 × education + β̂2 × seniority

Underfit the training, poor prediction.

Stat methods for ML (UofT) STA314-Lec1 41 / 54



Example

A more flexible model (good nonparametric model).

Stat methods for ML (UofT) STA314-Lec1 42 / 54



Example

A even more flexible nonparametric model.
Zero error on the training data! An indicator for overfitting.
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Test MSE

Tradeoff between the test MSE and the flexibility (complexity) of the
fitted model f̂ .

Question: Is there a universal rule or explanation about this?
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Bias-Variance decomposition

Let (X∗,Y∗) be a new random pair (independent from Dtrain
) following

Y∗ = f (X∗) + ε∗ with E[ε∗] = 0.

For any estimator f̂ (obtained from Dtrain
), its conditional expected MSE

at any X∗ = x∗ is

E [(Y∗ − f̂ (X∗))
2 ∣X∗ = x∗]

= Var(f̂ (x∗))ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Variance

+
⎛
⎜⎜
⎝
E[f̂ (x∗)] − f (x∗)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Bias

⎞
⎟⎟
⎠

2

+ Var(ε∗)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Irreducible error

≥ Var(ε∗)

The first expectation is over ε∗ as well as Dtrain
.

The expected MSE ≥ the Irreducible error.

An ideal f̂ should minimize the expected MSE.
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What is the Bias-Variance Trade-off?

Variance: how much f̂ would change if we estimated it using a different
training data set.

Bias: refers to the error that is introduced by parametrizing f .

E.g., the real relationship between response and predictors is nonlinear

f (X ) = β0 + β1X + β2X
2
+ β3X

3
,

but we fit a linear model

f̂ (X ) = β̂0 + β̂1X .

This causes a bias in E[f̂ (x∗)] − f (x∗) at X∗ = x∗.
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What is the Bias-Variance Trade-off?

As the complexity (a.k.a. flexibility) of f̂ increases (e.g., linear

method → non-parametric methods), the variance of f̂ typically
increases whereas its bias decreases.

▶ The variance of any fitted model f̂ also depends on the sample size
(n), and is roughly proportional to

complexity of f̂
n .

▶ When n is small, a fitted model with high complexity performs poorly
due to large variance.

▶ When n is large enough, a more complex fitted model tends to peform
better as they have smaller bias than simpler models.
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More on the tradeoff

So choosing the complexity of f̂ based on the expected MSE has a
bias-variance trade-off.

When two f̂1 and f̂2 have similar expected MSEs, we usually prefer the
more parsimonious (less complex) one.
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Example

Left: Data simulated from f , shown in black. Three estimates of f are shown: the linear
regression line (orange curve), and two nonparametric fits (blue and green curves).

Right: Training MSE (grey curve), test MSE (red curve), and minimum test MSE over all
possible methods (dashed line).
Squares represent the training and test MSEs for the three fits shown in the LHS panel.
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Example

red curve: the test MSE.

blue curve: (E[f̂ (x)] − f (x))2

orange curve: Var(f̂ (x))

dashed horizontal line: Var(ε)
dotted vertical line: the best
flexibility corresponding to the
smallest test MSE.

Stat methods for ML (UofT) STA314-Lec1 50 / 54



There are alternative metrics for measuring f̂ , such as the Sum of
Absolute Difference (SAM):

E[∣Y − f̂ (X )∣], 1
n

n

∑
i=1

»»»»»yi − f̂ (xi)
»»»»» .

Both MSE and SAM are only appropriate for quantatitive Y !

What about categorical or ordinal Y ?
▶ Spam email detection: Y = 0 for non-spam, Y = 1 for spam
▶ Hand-written digit recoginition: Y ∈ {0, 1, ..., 9}
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Metric of f̂ for classification

When Y is categorical or ordinal, the expected error rate is defined as

E [1{Y ≠ f̂ (X )}] .1

Analogously, the training error rate is

1
n

n

∑
i=1

1 {yi ≠ f̂ (xi)}

and the test error rate is

1
m

m

∑
i=1

1 {yTi ≠ f̂ (xTi)} .

Of course, there also exists other metrics that can be used when Y is
categorical or ordinal.

1
1{} is the indicator function. 1{A} = 1 if A is true and 1{A} = 0 otherwise.
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Summary on the metrics of the fit

Metrics:
▶ In regression problems, we have the expected MSE, the training MSE

and the test MSE.
▶ In classification problems, we have the expected error rate, the training

error rate and the test error rate.

Model selection:
▶ The best model yields the smallest expected (test) MSE (error rate).
▶ Among models that have similar expected MSE (error rate), we always

prefer the more parsimonious one.

Bias and variance trade-off:
▶ A more complex / flexible f̂ has smaller bias but larger variance
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In practice, how should we compute the expected MSE to select the
best f̂ when we do not have test data?
(We will come back to this later in Lecture 3).

What’s next?

▶ Different algorithms of computing f̂ ......

Questions?
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