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Linear decision boundaries

In binary classification problems, we have seen examples of classifiers that
use linear decision boundaries.

o Logistic regression:

P(Y =1] X =x)
EP(Y =0 X =x)

lo :60+,6Tx.
Hence, P(Y =1 | X =x) =2P(Y =0]| X =x) if and only if
ﬁo+ﬂTx > 0.

The decision boundary is

{xeRp:ﬁ0+,6Tx=0}.
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Linear decision boundaries

e LDA:
- 1 -
Sk(x) = x =y - EMZZ g +logme, Yk €{0,1}.

Hence, d1(x) = dp(x) if and only if

( ug + uy
X —

-
-1 s
3 ) Y (ul—u0)+|0g7r—;20.

The decision boundary is
{xERp:a0+aTx:O}

for some ag and a.
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A general formulation of linear classifiers

Binary classification: predicting a target with two values, y € {-1, +1},
(notational change from the past).

@ Consider the linear decision boundary
w'x+b=0

for some weights w € R” and b € R.

@ A good decision boundary should satisfy: for a given point (x, y),

w x+b>0, ify=1
w'x+b<0, ify=-—L.

Stat methods for ML (UofT) STA314-Lec-SVM 4 /26



Separating Hyperplanes

Suppose we are given these data points from two different classes and want to
find a linear classifier that separates them.

*
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Separating Hyperplanes

@ The decision boundary is a line in R’

o {xeR":w x+b=0}isa (p— 1) dimensional space , a.k.a. hyperplane.
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Simple Intuition and Potential Issues

To correctly classify all points we require that

sign(wa,- +b) =y for all i € [n].

@ We should find w and b to meet the above goal.

@ However:
» When the data is separable, there exists multiple solutions of w and b.
Which to choose?

» When the data is not separable, it is infeasible.
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Separable Cases

by +wiz=0

@ There are multiple separating hyperplanes, determined by different
parameters (w, b).
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Separable Cases
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Optimal Separating Hyperplane

Optimal Separating Hyperplane: A hyperplane that separates two classes and

maximizes the distance to the closest point from either class, i.e., maximize the
margin of the classifier.

Intuitively, ensuring that a classifier is not too close to any data points leads to
better generalization on the test data.
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Geometry of Points and Planes

w

*

Al

f@)=b+w'z=0

@ Recall that the decision hyperplane is orthogonal (perpendicular) to w. l.e.,
for any two points x; and x», on the decision hyperplane we have that
wT(xl - xy) =0.
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Geometry of Points and Planes

w

*

el

w'z+b

\ % llwll

f@)=b+w'z=0

@ The vector w”* is a unit vector pointing in the same direction as w.

— _w
[lwll,

@ The same hyperplane could equivalently be defined in terms of w*.
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Geometry of Points and Planes

« w

ol

wlz+b

STl

f@)=b+w'z=0

@ Question: how to compute the distance from a point x to the hyperplane
{x:b+w' x=0}.
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Distance to a Given Hyperplane

Fix the point x as well as w and b which determine the hyperplane.

@ Take the closest point x,,; on the hyperplane, which satisfies

T

W X +b=0.

proj

e We know that x' — Xproj i parallel to w* = w/||lwl|,

@ The distance is

1 I T W
X" = Xprojll2 = |(X' = Xproj) m‘
|wa' - waproj |wa' + b|
B llwll> — wll,

Stat methods for ML (UofT) STA314-Lec-SVM 14 / 26



Maximizing Margin as an Optimization Problem

b+w'z=0

@ Now consider the two parallel hyperplanes
wix+b=1 wix+b=-1
@ Using the distance formula, can see that the margin is 2/ ||w||,.
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Maximizing Margin as an Optimization Problem

@ Recall: to correctly classify all points we require that
. T .
sign(w x; + b) = y; for all i € [n]

@ Let's impose a stronger requirement: correctly classify all points and prevent
them from falling in the margin. For some M > 0,

|
=

wx;+bzM if y, =

Il
|
-

W x;+bs-M if y;
@ This is equivalent to
Yi (wa,- + b) =M for all i € [n]

which we call the margin constraints.
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Maximizing Margin as an Optimization Problem

@ There might exist multiple (w, b) satisfy the margin constraints. We
want to pick the one that maximizes the width of the margin,
|xTw + b| M

lIwlly — llwlly’

@ This leads to the max-margin objective:

2
llwl[2
M2

w,b

s.t. y,-(wa,- +b)=M, foralli=1,...,n

W.l.o.g. we can set M = 1. (Why?)
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Maximizing Margin as an Optimization Problem

Max-margin objective:
. 2
min [|wl[3

s.t. y,-(wa,-+b)21 i=1,....n

b+w x=0

@ Intuitively, if the margin constraint is not tight for x;, we could remove x;
from the training set and the optimal hyperplane would be the same.!

@ The important training points are those with equality constraints, and are
called support vectors.

@ Hence, this algorithm is called the (hard-margin) Support Vector Machine
(SVM). SVM-like algorithms are often called max-margin or large-margin.

1 . . . o
This can be rigorously shown via the K.K.T. conditions.
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Computation of the hard-margin SVM

Primal-formulation:

. 2
min |lw||3

)

s.t. y,-(wa,-+b) =1 i=1,...,n
e Convex, in fact, a quadratic program. (Stochastic) Gradient descent
can be directly used.

@ In practice, it is more common to solve the optimization problem
based on its dual formulation.?

2 .
See the suggested reading.
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Extension to Non-Separable Data Points

How can we apply the max-margin principle if the data are not linearly separable?
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Soft-margin SVM

We introduce slack variables ¢ = ((1,...,(,) and consider

min ||w]l3
b,¢

gl

s.t. y,-(wa,-+b)21—C,-, ¢(;=0, foralli=1,...,n

ici < K.
i=1

@ Misclassification occurs if {; > 1.

° 27:1 (; < K restricts the total number of misclassified points less
than K.

@ K =0 is a tuning parameter. K = 0 reduces to the hard-margin SVM.
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Another interpretation of the soft-margin SVM

@ Soft-margin SVM is equivalent to, for some C = C(K),

n
2
wi3+ ¢ ¢
i=1
s.t. y,-(wa,-+b)21—§,-, ¢G=0, i=1...,n.

@ This is further equivalent to

m|n = Z max {O 1-y; (w X; + b)} +A ||W||2

hlnge loss

with A = 1/(nC). Hence, the soft-margin SVM can be seen as a
linear classifier with the hinge loss and the ridge penalty.
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The hinge loss:
Luinge(w, b) = max{0,1 - y; (w'x; + b)}

We only want to minimize 1 — y,-(wa,- + b) when it is positive.

y,-(wa,- +b)=1 = v + out of margin
y,-(wa,- +b) €[0,1] = V' but within margin
y,-(wa,- +b)<0 = X

The 0-1 loss

LO-I(W7 b) =1 {y, (WTX,' + b) < 0} .

Stat methods for ML (UofT) STA314-Lec-SVM 23 /26



Revisiting Loss Functions for Classification

Hinge loss compared with the 0-1 loss:

y=max{0,1—-x} wvs. y=1{x<0}
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Limitations of SVM

@ The classifier based on SVM is
sign(WTx + b).

Hence, SVM does not estimate the posterior probability.

@ For multi-class classification problems,

» It is non-trivial to generalize the notion of a margin to multiclass
setting.

» Many different proposals for multi-class SVMs. We discuss two
commonly used ad-hoc approaches in the suggested reading material.
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LDA vs SVM vs Logistic Regression (LR)

@ In essence, SVM is more similar as LR than LDA. (LDA makes
additional Gaussianity assumptions.)

@ SVM does not estimate the conditional probabilities, such as
P(Y =1| X), but LDA and LR do.

@ When classes are (nearly) separable, SVM and LDA perform better
than LR.

@ When classes are non-separable, LR (with ridge penalty) and SVM are
very similar.

@ When Gaussianity can be justified, LDA has the best performance.

@ SVM and LR are less used for multi-class classification problems.
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