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Review

In the last lecture, we have learned the logistic regression for binary
classification with Y ∈ {0, 1}.

Estimating the Bayes rule at any observation x ∈ X is equivalent to
estimate the conditional probability P(Y = 1 ∣ X = x).
Logistic regression parametrizes the conditional probability by

P(Y = 1 ∣ X = x) = e
β0+x

⊤
β

1 + eβ0+x
⊤β
.

We estimate the coefficients by using MLE which can be solved by
(stochastic) gradient descent.
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Extension to multi-class classification

When Y ∈ {0, 1, . . . ,K − 1} for K > 2, we need to estimate

pk(x) ∶= P(Y = k ∣ X = x), ∀ 0 ≤ k ≤ K − 1.

We assume

p0(x) =
1

1 +∑K−1
k=1 eβ

(k)
0 +x⊤β(k)

,

p1(x) =
e
β
(1)
0 +x⊤β(1)

1 +∑K−1
k=1 eβ

(k)
0 +x⊤β(k)

.

⋮

pK−1(x) =
e
β
(K−1)
0 +x⊤β(K−1)

1 +∑K−1
k=1 eβ

(k)
0 +x⊤β(k)

Choice of the baseline (which is Y = 0) is arbitrary.
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Classification

Equivalently,

log (p1(x)
p0(x)

) = β(1)
0 + β

(1)
1 x1 +⋯+ β

(1)
p xp

log (p2(x)
p0(x)

) = β(2)
0 + β

(2)
1 x1 +⋯+ β

(2)
p xp

⋮

log (pK−1(x)
p0(x)

) = β(K−1)
0 + β

(K−1)
1 x1 +⋯+ β

(K−1)
p xp

So classification can be done immediately once β
(k)

’s are estimated,
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How to estimate coefficients?

A naive approach: separate binary logistic regressions

log (pk(x)
p0(x)

) = β(k)
0 + β

(k)
1 x1 +⋯+ β

(k)
p xp, ∀ 1 ≤ k ≤ K − 1.

Split the data into {Dtrain
(1), . . . ,D

train
(K−1)} with Dtrain

(k) containing all
data with y ∈ {0, k} for 1 ≤ k ≤ K − 1.

1. For each 1 ≤ k ≤ K − 1, use Dtrain
(k) to perform binary logistic

regression to estimate β
(k)

and estimate

pk(x)
p0(x)

2. Assign class label by comparing

1,
p1(x)
p0(x)

,
p2(x)
p0(x)

. . . ,
pK−1(x)
p0(x)
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Why naive?

Estimation of β
(k)

▶ only uses Dtrain
(k) containing data points in class {0, k}

▶ ignore all data points in other classes

The event {yi = k} is dependent on all other {yi = k
′} for k

′
≠ k.

Intuitively, this dependence helps to estimate β
(k)

by pooling data
from all classes.

What should we use instead?
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MLE for multi-class logistic regression

The conditional log-likelihood of y1, . . . , yn ∣ x1, . . . , xn at

(β(1)
, . . . ,β

(K−1)), with no intercepts, is proportional to

n

∑
i=1

log (
K−1

∏
k=0

pk(xi)1{yi=k})

=

n

∑
i=1

K−1

∑
k=0

1{yi = k} log (pk(xi))

=

n

∑
i=1

[1{yi = 0} log (p0(xi)) +
K−1

∑
k=1

1{yi = k} log (pk(xi))]

=

n

∑
i=1

[
K−1

∑
k=1

1{yi = k} x
⊤
i β

(k)
−

K−1

∑
k=0

1{yi = k} log (1 +
K−1

∑
k=1

e
x
⊤
i β

(k)
)]

=

n

∑
i=1

[
K−1

∑
k=1

1{yi = k} x
⊤
i β

(k)
− log (1 +

K−1

∑
k=1

e
x
⊤
i β

(k)
)]
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Gradient of `(β(k))
For any 1 ≤ k ≤ K − 1,

∂`(β(1)
, . . . ,β

(K−1))
∂β(k) =

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1{yi = k} xi −

xie
x
⊤
i β

(k)

1 +∑K−1
k=1 ex

⊤
i β

(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1{yi = k} − e

x
⊤
i β

(k)

1 +∑K−1
k=1 ex

⊤
i β

(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi

c.f. the binary case (K = 2)

∂`(β)
∂β

=

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1{yi = 1} − e

x
⊤
i β

1 + ex
⊤
i β

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi

=

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
yi −

e
x
⊤
i β

1 + ex
⊤
i β

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi .
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Gradient descent

Therefore, for 1 ≤ k ≤ K , we update

β̂
(k)
(t+1) = β̂

(k)
(t) + α

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1{yi = k} − e

x
⊤
i β̂

(k)
(t)

1 +∑K−1
k=1 ex

⊤
i β̂

(k)
(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
xi .

Remark:

the gradient update uses data points from all classes!

better estimation than the naive approach

Stat methods for ML (UofT) STA314-Lec-MultiLR 9 / 10



An alternative to Logistic Regression

When the classes are well-separated, the parameter estimates for the
logistic regression model are surprisingly unstable

1
.

▶ Discriminant analysis does not suffer from this problem.

When n is small and we know more about the data, such as the
distribution of X ∣ Y = k

▶ Discriminant analysis has better performance than the logistic
regression model.

Logistic Regression sometimes does not handle multi-class
classification well

▶ Discriminant analysis is more suitable for multi-class classification
problems.

1
A paper on this.
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https://statisticalhorizons.com/wp-content/uploads/Allison.StatComp.pdf

