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Review

In classification, X ∈ X and Y ∈ C = {0, 1, . . . ,K − 1}.

The Bayes rule

f
∗(x) = arg max

k∈C
P {Y = k ∣ X = x} , ∀x ∈ X

has the smallest expected error rate.

For binary classification, our goal is to estimate

p(x) ∶= P (Y = 1 ∣ X = x)
= E[Y ∣ X = x], ∀x ∈ X

Stat methods for ML (UofT) STA314-Lec-BinaryLR 2 / 25



Logistic Regression

Logistic Regression is a parametric approach that postulates parametric
structure on the function p ∶ X ↦ [0, 1].

It is assumed that

p(x) ∶= p(x;β) = e
β0+β1x1+⋯+βpxp

1 + eβ0+β1x1+⋯+βpxp
, ∀x ∈ X .

The function f (t) = e
t/(1 + e

t) is called the logistic function.
β0, . . . , βp are the parameters.

We always have 0 ≤ p(x) ≤ 1.

Note that p(x;β) is NOT a linear function either in x or in β.
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Logistic Regression

A bit of rearrangement gives

p(x)
1 − p(x)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

odds

= e
β0+β1x1+⋯+βpxp ,

log [ p(x)
1 − p(x)]

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
log-odds (a.k.a. logit)

= β0 + β1x1 +⋯+ βpxp.

odds ∈ [0,∞) and log-odds ∈ (−∞,∞).

Similar interpretation as linear models
1

1
Each βj represents the change of log-odds for one unit increase in Xj (with other

features held fixed).
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Logistic regression

Our interests:

Prediction: for any x0 ∈ X , classify its corresponding label y0.

Estimation: how to estimate the vector of β by using our training
data?
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Prediction at different levels under logistic regression

Let β̂ = (β̂0, . . . , β̂p) be any estimates of β.

Prediction of the logit at x ∈ X :

ˆlogit(x) = β̂0 + β̂1x1 +⋯+ β̂pxp.

Prediction of the conditional probability p(x) = P(Y = 1∣X = x):

p̂(x) = e
β̂0+β̂1x1+⋯+β̂pxp

1 + e β̂0+β̂1x1+⋯+β̂pxp

Classify the label Y at X = x:

ŷ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if p̂(x) ≥ 0.5;

0, otherwise.
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Maximum Likelihood Estimator (MLE)

Given Dtrain
= {(x1, y1), ..., (xn, yn)} with yi ∈ {0, 1}, we estimate the

parameters by maximizing the likelihood of Dtrain
.

The maximum likelihood principle

We seek the estimates of parameters such that the fitted probability are
the closest to the individual’s observed outcome.
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Computation of the MLE under Logistic Regression

General steps of computing the MLE:

Write down the likelihood, as always!

Solve the optimization problem.

Stat methods for ML (UofT) STA314-Lec-BinaryLR 8 / 25



Likelihood under Logistic Regression

For simplicity, let us set β0 = 0 such that

p(x;β) = e
x
⊤
β

1 + ex⊤β
, 1 − p(x;β) = 1

1 + ex⊤β
.

The data consists of (x1, y1), . . . , (xn, yn) with

yi ∼ Bernoulli(p(xi ;β)), p(xi ;β) = e
x
⊤
i β

1 + ex⊤i β
, 1 ≤ i ≤ n.

What is the likelihood of (xi , yi)?
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Likelihood under Logistic Regression

The likelihood of each data point (xi , yi) at any β is

L(β; xi , yi)∝ [p(xi ;β)]yi [1 − p(xi ;β)]1−yi

with

p(xi ;β) = e
x
⊤
i β

1 + ex⊤i β
.

The sign ∝ means “proportional to, up to some multiplicative term that
does not involve the parameter β.

The joint likelihood of all data points is

L(β) =
n

∏
i=1

[p(xi ;β)]yi [1 − p(xi ;β)]1−yi .
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Log-likelihood under Logistic Regression

The log-likelihood at any β is

`(β) = log {
n

∏
i=1

[p(xi ;β)]yi [1 − p(xi ;β)]1−yi}

=

n

∑
i=1

[yi log(p(xi ;β)) + (1 − yi) log(1 − p(xi ;β))]

=

n

∑
i=1

[yi log ( p(xi ;β)
1 − p(xi ;β)) + log(1 − p(xi ;β))]

=

n

∑
i=1

[yix⊤i β − log (1 + e
x
⊤
i β)] .
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How to compute the MLE?

How do we maximize the log-likelihood

`(β) =
n

∑
i=1

[yix⊤i β − log (1 + e
x
⊤
i β)]

for logistic regression?

It is equivalent to minimize −`(β) over β.

No direct solution: taking derivatives of `(β) w.r.t. β and setting
them to 0 doesn’t have an explicit solution.

Need to use iterative procedure.

Stat methods for ML (UofT) STA314-Lec-BinaryLR 12 / 25



Why MLE?

The MLE, whenever they can be computed, has many nice properties!

Asymp. consistent

β̂ − β → 0, in probability as n →∞.

Asymp. normal

√
n (β̂ − β)→ N(0,Σ) in distribution as n →∞.

Asymp. efficient:

Σ is the “smallest” among all asymptotic unbiased estimators.

Any downsides? computation, model misspecification ...
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Inference under logistic regression

Let β̂ be the MLE of β.

Z-statistic is similar to t-statistic in regression, and is defined as

β̂j

SE(β̂j)
, ∀j ∈ {0, 1, . . . , p}

where SE(β̂j) is the asymp. variance of β̂j (equal to Σ̂jj/n in the
previous slide).

It produces p-value for testing the null hypothesis

H0 ∶ βj = 0 v.s. H1 ∶ βj ≠ 0.

A large (absolute) value of the z-statistic or small p-value indicates
evidence against H0.
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Example: Default data

Suppose that we are interested in predicting

the probability of default for a given customer

by using student status as the only feature.

By encoding xi = 1{the ith customer is student} and, yi = 1 if default
happens and 0 otherwise. Fit the logistic regression model

log ( p(X )
1 − p(X )) = β0 + β1X .
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Prediction of p(x)

p(x) = P(Y = 1 ∣ X = x) = e
β0+β1x

1 + eβ0+β1x
.

The fitted maximum likelihood estimates of β0 and β1 satisfy:

Coefficient Std.Error Z-statistic P-value
Intercept -3.5 0.071 -49.55 <0.0001
student[Yes] 0.405 0.115 3.52 0.0004

p̂(x = 1) = P̂(default ∣ student) = e
−3.5+0.405×1

1 + e−3.5+0.405×1
≈ 0.043

p̂(x = 0) = P̂(default ∣ non-student) = e
−3.5+0.405×0

1 + e−3.5+0.405×0
≈ 0.029
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Example: Default data

Consider using more predictors: balance(X1), income(X2), and student
status(X3).

log ( p(X )
1 − p(X )) = β0 + β1X1 + β2X2 + β3X3

The maximum likelihood estimates yield:

Coefficient Std.Error Z-statistic P-value
Intercept -10.87 0.492 -22.08 <0.0001
balance 0.006 0.0002 24.74 <0.0001
income 0.003 0.0082 0.37 0.712
student[Yes] -0.647 0.2362 -2.74 0.0062

Question: how does the coefficient of student status changes?
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Metrics used for evaluating classifiers

In classification, we have several metrics that can be used to evaluate a
given classifier.

The most commonly used metric is the overall classification accuracy.

For binary classification, there are a few more out there.....
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Cont’d example: the Default Data

Classify whether or not an individual will default on the basis of credit
card balance and student status.

The confusion matrix of fitted logistic regression

The training error rate is (23 + 252)/10000 = 2.75%.
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Type of Errors for binary classification

1. False positive rate (FPR): The fraction of negative examples that
are classified as positive: 23/9667 = 0.2% in default data.

2. False negative rate (FNR): The fraction of positive examples that

are classified as negative: 252/333 = 75.7% in default data.
2

2
For a credit card company that is trying to identify high-risk individuals, the error

rate 75.7% among individuals who default is unacceptable.
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Control the false negative rate

Q: How to modify the logistic classifier to lower the false negative rate?

the fraction of positive examples as negative

the fraction of default examples classified as non-default

The current classifier is based on the rule

ŷi = 1 (default), if P̂(default = yes ∣ X = xi) ≥ 0.5

ŷi = 0 (non-default), otherwise.
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Control the false negative rate

To lower FNR, we reduce the number of negative predictions.
Classify X = x to yes if

P̂ (Y = yes ∣ X = x) ≥ t.

for some 0 ≤ t < 0.5.

▶ Why starts with t = 0.5?

▶ What happens for t = 0?

▶ What happens for t = 1?
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Trade-off between FPR and FNR

We can achieve better balance between FPR and FNR by varying the
threshold t:
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ROC Curve

The ROC curve is a popular graphic for simultaneously displaying FPR
and TPR = 1 - FNR for all possible thresholds.

The overall performance of a classifier, summarized over all thresholds, is
given by the area under the curve (AUC). High AUC is good.
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More metrics in the binary classification

The above also defines sensitivity and specificity.
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