STA 314: Statistical Methods for Machine Learning I

Lecture - Logistic Regression in Binary Classification

Xin Bing

Department of Statistical Sciences University of Toronto

Review

- In classification, $X \in \mathcal{X}$ and $Y \in C = \{0, 1, ..., K 1\}$.
- The Bayes rule

$$f^*(\mathbf{x}) = \arg \max_{k \in C} \mathbb{P} \{ Y = k \mid X = \mathbf{x} \}, \quad \forall \mathbf{x} \in \mathcal{X}$$

has the smallest expected error rate.

• For binary classification, our goal is to estimate

$$p(\mathbf{x}) := \mathbb{P} (Y = 1 \mid X = \mathbf{x})$$
$$= \mathbb{E}[\mathbf{Y} \mid \mathbf{X} = \mathbf{x}], \qquad \forall \mathbf{x} \in \mathcal{X}$$

Logistic Regression

Logistic Regression is a parametric approach that postulates parametric structure on the function $p: \mathcal{X} \mapsto [0,1]$.

It is assumed that

$$p(\mathbf{x}) := p(\mathbf{x}; \boldsymbol{\beta}) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}, \quad \forall \mathbf{x} \in \mathcal{X}.$$

The function $f(t) = e^t/(1 + e^t)$ is called the logistic function. β_0, \ldots, β_p are the parameters.

- We always have $0 \le p(\mathbf{x}) \le 1$.
- Note that $p(\mathbf{x}; \beta)$ is **NOT** a linear function either in \mathbf{x} or in β .

Logistic Regression

A bit of rearrangement gives

$$\begin{split} & \underbrace{\frac{p(\mathbf{x})}{1-p(\mathbf{x})}}_{\text{odds}} = \mathrm{e}^{\beta_0+\beta_1x_1+\cdots+\beta_px_p}, \\ & \underbrace{\log\left[\frac{p(\mathbf{x})}{1-p(\mathbf{x})}\right]}_{\text{log-odds (a.k.a. logit)}} = \beta_0+\beta_1x_1+\cdots+\beta_px_p. \end{split}$$

odds $\in [0, \infty)$ and log-odds $\in (-\infty, \infty)$.

• Similar interpretation as linear models¹

¹Each β_j represents the change of log-odds for one unit increase in X_j (with other features held fixed).

Logistic regression

Our interests:

- **Prediction**: for any $\mathbf{x}_0 \in \mathcal{X}$, classify its corresponding label y_0 .
- **Estimation**: how to estimate the vector of β by using our training data?

Prediction at different levels under logistic regression

Let $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)$ be any estimates of β .

• Prediction of the logit at $x \in \mathcal{X}$:

$$\hat{\log}it(\mathbf{x}) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p.$$

• Prediction of the conditional probability $p(x) = \mathbb{P}(Y = 1 | X = x)$:

$$\hat{p}(\mathbf{x}) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p}}$$

• Classify the label Y at X = x:

$$\hat{y} = \begin{cases} 1, & \text{if } \hat{p}(\mathbf{x}) \ge 0.5; \\ 0, & \text{otherwise.} \end{cases}$$

Maximum Likelihood Estimator (MLE)

Given $\mathcal{D}^{train} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}$ with $y_i \in \{0, 1\}$, we estimate the parameters by **maximizing the likelihood** of \mathcal{D}^{train} .

The maximum likelihood principle

We seek the estimates of parameters such that the fitted probability are the closest to the individual's observed outcome.

Computation of the MLE under Logistic Regression

General steps of computing the MLE:

- Write down the likelihood, as always!
- Solve the optimization problem.

Likelihood under Logistic Regression

For simplicity, let us set $\beta_0 = 0$ such that

$$p(\mathbf{x}; \boldsymbol{\beta}) = \frac{e^{\mathbf{x}^{\mathsf{T}} \boldsymbol{\beta}}}{1 + e^{\mathbf{x}^{\mathsf{T}} \boldsymbol{\beta}}}, \qquad 1 - p(\mathbf{x}; \boldsymbol{\beta}) = \frac{1}{1 + e^{\mathbf{x}^{\mathsf{T}} \boldsymbol{\beta}}}.$$

The data consists of $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ with

$$y_i \sim \text{Bernoulli}(p(\mathbf{x}_i; \boldsymbol{\beta})), \qquad p(\mathbf{x}_i; \boldsymbol{\beta}) = \frac{e^{\mathbf{x}_i^\top \boldsymbol{\beta}}}{1 + e^{\mathbf{x}_i^\top \boldsymbol{\beta}}}, \quad 1 \leq i \leq n.$$

• What is the likelihood of (\mathbf{x}_i, y_i) ?

Likelihood under Logistic Regression

The likelihood of each data point (\mathbf{x}_i, y_i) at any $\boldsymbol{\beta}$ is

$$L(\beta; \mathbf{x}_i, y_i) \propto [p(\mathbf{x}_i; \beta)]^{y_i} [1 - p(\mathbf{x}_i; \beta)]^{1-y_i}$$

with

$$p(\mathbf{x}_i; \boldsymbol{\beta}) = \frac{e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}}}{1 + e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}}}.$$

The sign \propto means "proportional to, up to some multiplicative term that does not involve the parameter β .

The joint likelihood of all data points is

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{n} \left[p(\mathbf{x}_i; \boldsymbol{\beta}) \right]^{y_i} \left[1 - p(\mathbf{x}_i; \boldsymbol{\beta}) \right]^{1-y_i}.$$

Log-likelihood under Logistic Regression

The log-likelihood at any β is

$$\ell(\beta) = \log \left\{ \prod_{i=1}^{n} \left[p(\mathbf{x}_{i}; \beta) \right]^{y_{i}} \left[1 - p(\mathbf{x}_{i}; \beta) \right]^{1-y_{i}} \right\}$$

$$= \sum_{i=1}^{n} \left[y_{i} \log(p(\mathbf{x}_{i}; \beta)) + (1 - y_{i}) \log(1 - p(\mathbf{x}_{i}; \beta)) \right]$$

$$= \sum_{i=1}^{n} \left[y_{i} \log \left(\frac{p(\mathbf{x}_{i}; \beta)}{1 - p(\mathbf{x}_{i}; \beta)} \right) + \log(1 - p(\mathbf{x}_{i}; \beta)) \right]$$

$$= \sum_{i=1}^{n} \left[y_{i} \mathbf{x}_{i}^{\mathsf{T}} \beta - \log \left(1 + e^{\mathbf{x}_{i}^{\mathsf{T}} \beta} \right) \right].$$

How to compute the MLE?

How do we maximize the log-likelihood

$$\ell(\beta) = \sum_{i=1}^{n} \left[y_i \mathbf{x}_i^{\mathsf{T}} \beta - \log \left(1 + e^{\mathbf{x}_i^{\mathsf{T}} \beta} \right) \right]$$

for logistic regression?

- It is equivalent to minimize $-\ell(\beta)$ over β .
- No direct solution: taking derivatives of $\ell(\beta)$ w.r.t. β and setting them to 0 doesn't have an explicit solution.
- Need to use iterative procedure.

Why MLE?

The MLE, whenever they can be computed, has many nice properties!

Asymp. consistent

$$\hat{\beta} - \beta \to 0$$
, in probability as $n \to \infty$.

Asymp. normal

$$\sqrt{n}(\widehat{\beta} - \beta) \to N(0, \Sigma)$$
 in distribution as $n \to \infty$.

Asymp. efficient:

 $\boldsymbol{\Sigma}$ is the "smallest" among all asymptotic unbiased estimators.

Any downsides? computation, model misspecification ...

Inference under logistic regression

Let $\hat{\beta}$ be the MLE of β .

• Z-statistic is similar to t-statistic in regression, and is defined as

$$\frac{\hat{\beta}_j}{SE(\hat{\beta}_j)}, \qquad \forall j \in \{0, 1, \dots, p\}$$

where $SE(\hat{\beta}_j)$ is the asymp. variance of $\hat{\beta}_j$ (equal to $\hat{\Sigma}_{jj}/n$ in the previous slide).

• It produces p-value for testing the null hypothesis

$$H_0: \beta_j = 0$$
 v.s. $H_1: \beta_j \neq 0$.

A large (absolute) value of the z-statistic or small p-value indicates evidence against H_0 .

Example: Default data

Suppose that we are interested in predicting

the probability of default for a given customer

by using student status as the only feature.

By encoding $x_i = 1$ {the *i*th customer is student} and, $y_i = 1$ if default happens and 0 otherwise. Fit the logistic regression model

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

Prediction of p(x)

$$p(x) = \mathbb{P}(Y = 1 \mid X = x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}.$$

The fitted maximum likelihood estimates of β_0 and β_1 satisfy:

	Coefficient	Std.Error	Z-statistic	P-value
Intercept	-3.5	0.071	-49.55	< 0.0001
student[Yes]	0.405	0.115	3.52	0.0004

$$\hat{\rho}(x=1) = \hat{\mathbb{P}}(\text{default} \mid \text{student}) = \frac{e^{-3.5 + 0.405 \times 1}}{1 + e^{-3.5 + 0.405 \times 1}} \approx 0.043$$

$$\hat{\rho}(x=0) = \hat{\mathbb{P}}(\text{default} \mid \text{non-student}) = \frac{e^{-3.5 + 0.405 \times 0}}{1 + e^{-3.5 + 0.405 \times 0}} \approx 0.029$$

Example: Default data

Consider using more predictors: **balance**(X_1), **income**(X_2), and **student status**(X_3).

$$\log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

The maximum likelihood estimates yield:

	Coefficient	Std.Error	Z-statistic	P-value
Intercept	-10.87	0.492	-22.08	<0.0001
balance	0.006	0.0002	24.74	< 0.0001
income	0.003	0.0082	0.37	0.712
student[Yes]	-0.647	0.2362	-2.74	0.0062

Question: how does the coefficient of student status changes?

Metrics used for evaluating classifiers

In classification, we have several metrics that can be used to evaluate a given classifier.

- The most commonly used metric is the overall classification accuracy.
- For binary classification, there are a few more out there.....

Cont'd example: the Default Data

 Classify whether or not an individual will default on the basis of credit card balance and student status.

• The confusion matrix of fitted logistic regression

		True default status		
		No	Yes	Total
Predicted	No	9,644	252	9,896
$default\ status$	Yes	23	81	104
	Total	9,667	333	10,000

• The training error rate is (23 + 252)/10000 = 2.75%.

Type of Errors for binary classification

		True default status		
		No	Yes	Total
Predicted	No	9,644	252	9,896
$default\ status$	Yes	23	81	104
	Total	9,667	333	10,000

- 1. False positive rate (FPR): The fraction of negative examples that are classified as positive: 23/9667 = 0.2% in default data.
- 2. False negative rate (FNR): The fraction of positive examples that are classified as negative: 252/333 = 75.7% in default data.²

²For a credit card company that is trying to identify high-risk individuals, the error rate 75.7% among individuals who default is unacceptable.

Control the false negative rate

Q: How to modify the logistic classifier to lower the false negative rate?

the fraction of **positive** examples as **negative**the fraction of **default** examples classified as **non-default**

The current classifier is based on the rule

$$\hat{y}_i = 1$$
 (default), if $\hat{\mathbb{P}}(\text{default} = yes \mid X = \mathbf{x}_i) \ge 0.5$
 $\hat{y}_i = 0$ (non-default), otherwise.

Control the false negative rate

• To lower FNR, we reduce the number of negative predictions. Classify $X = \mathbf{x}$ to yes if

$$\hat{\mathbb{P}}\left(Y=yes\mid X=\mathbf{x}\right)\geq t.$$

for some $0 \le t < 0.5$.

- Why starts with t = 0.5?
- ▶ What happens for t = 0?
- ▶ What happens for t = 1?

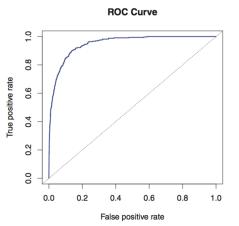
Trade-off between FPR and FNR

We can achieve better balance between FPR and FNR by varying the threshold t:



ROC Curve

The ROC curve is a popular graphic for simultaneously displaying FPR and TPR = 1 - FNR for all possible thresholds.



The overall performance of a classifier, summarized over all thresholds, is given by the area under the curve (AUC). High AUC is good.

More metrics in the binary classification

		Predicted class		
		– or Null	+ or Non-null	Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	N
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	P
	Total	N*	P*	

Name	Definition	Synonyms
False Pos. rate	FP/N	Type I error, 1—Specificity
True Pos. rate	TP/P	1—Type II error, power, sensitivity, recall
Pos. Pred. value	TP/P^*	Precision, 1—false discovery proportion
Neg. Pred. value	TN/N*	

The above also defines sensitivity and specificity.