STA 314: Statistical Methods for Machine Learning I

Lecture - Gradient Descent

Xin Bing

Department of Statistical Sciences University of Toronto

A general problem of solving a minimization problem

Suppose we want to solve the following problem

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \Theta}{\operatorname{argmin}} \, \mathcal{J}(\mathbf{w}; \mathcal{D}^{train}) := \underset{\mathbf{w} \in \Theta}{\operatorname{argmin}} \, \mathcal{J}(\mathbf{w})$$

where

- $\mathcal{J}(\mathbf{w}; \mathcal{D}^{train})$ is a differentiable function in $\mathbf{w} = (w_1, \dots, w_p)$
- $\mathcal{J}(\mathbf{w}; \mathcal{D}^{train})$ depends on \mathcal{D}^{train} as well
- ullet Θ is the parameter space of $oldsymbol{w}$, typically chosen as a subspace of \mathbb{R}^p
- The optimal solution (if exists) must be a critical point,
 i.e. point to which the derivative is zero
 (partial derivatives to zero for multi-dimensional parameter).

Finding the optimal solution requires to solve the equations

 Partial derivatives: derivatives of a multivariate function with respect to one of its arguments.

$$\frac{\partial}{\partial w_1} \mathcal{J}(w_1, w_2) = \lim_{h \to 0} \frac{\mathcal{J}(w_1 + h, w_2) - \mathcal{J}(w_1, w_2)}{h}$$

 The minimum must occur at a point where the partial derivatives are zero

$$\begin{bmatrix} \frac{\partial \mathcal{J}}{\partial w_1} \\ \vdots \\ \frac{\partial \mathcal{J}}{\partial w_p} \end{bmatrix} = 0$$

- This turns out to give a system of linear equations, which we can solve analytically in some scenarios.
- We may also use optimization techniques that iteratively get us closer to the solution.

Direct solution

OLS:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^p}{\operatorname{argmin}} \, \mathcal{J}(\mathbf{w}; \mathcal{D}^{train}) = \underset{\mathbf{w} \in \mathbb{R}^p}{\operatorname{argmin}} \, \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2.$$

The partial derivatives w.r.t. w are

$$\frac{\partial \mathcal{J}}{\partial \mathbf{w}} = -2\mathbf{X}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\mathbf{w}).$$

(If not familiar with multi-dimensional derivatives, calculate $\frac{\partial \mathcal{J}}{\partial w_j}$ and stack them together).

Setting the above equal to zero results

$$\mathbf{X}^{\top}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\top}\mathbf{y}, \qquad \Rightarrow \qquad \hat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

Direct solution

Ridge:

$$\hat{\mathbf{w}}_{\lambda}^{R} = \underset{\mathbf{w} \in \mathbb{R}^{p}}{\operatorname{argmin}} \, \mathcal{J}(\mathbf{w}; \mathcal{D}^{train}) = \underset{\mathbf{w} \in \mathbb{R}^{p}}{\operatorname{argmin}} \, ||\mathbf{y} - \mathbf{X}\mathbf{w}||_{2}^{2} + \lambda ||\mathbf{w}||_{2}^{2}.$$

The partial derivatives w.r.t. w are

$$\frac{\partial \mathcal{J}}{\partial \mathbf{w}} = -2\mathbf{X}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\mathbf{w}) + 2\lambda \mathbf{w}.$$

Setting the above equal to zero results

$$(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_p)\hat{\mathbf{w}}_{\lambda}^R = \mathbf{X}^{\top}\mathbf{y}, \qquad \Longrightarrow \qquad \hat{\mathbf{w}}_{\lambda}^R = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_p\right)^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

Gradient Descent

Now let's see a second way to solve

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \, \mathcal{J}(\mathbf{w})$$

which is more broadly applicable: gradient descent.

• Many times, we do not have a direct solution to

$$\frac{\partial \mathcal{J}}{\partial \mathbf{w}} = 0.$$

• Gradient descent is an **iterative algorithm**, which means we apply an update repeatedly until some criterion is met.

Gradient Descent

We **initialize** w to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of **steepest descent** of the loss function \mathcal{J} .

What is the direction of the steepest descent of $\mathcal{J}(\mathbf{w})$ at \mathbf{w} ?

Gradient Descent

• By definition, the direction of the greatest increase in $\mathcal{J}(\mathbf{w})$ at $\mathbf{w}^{(0)}$ is its gradient

$$\left. \frac{\partial \mathcal{J}(\mathbf{w})}{\partial \mathbf{w}} \right|_{\mathbf{w} = \mathbf{w}^{(0)}} \in \mathbb{R}^{p}$$

• So, we update \mathbf{w} in the **opposite** direction of the gradient at $\mathbf{w}^{(0)}$:

$$\mathbf{w}^{(1)} = \mathbf{w}^{(0)} - \alpha \cdot \frac{\partial \mathcal{J}(\mathbf{w})}{\partial \mathbf{w}} \Big|_{\mathbf{w} = \mathbf{w}^{(0)}}$$

for some $\alpha > 0$.

• If α is chosen small, then

$$\mathcal{J}(\mathbf{w}^{(1)}) < \mathcal{J}(\mathbf{w}^{(0)})$$

unless $\partial \mathcal{J}(\mathbf{w})/\partial \mathbf{w}$ at $\mathbf{w}^{(0)}$ is zero.

Gradient descent: coordinatewise viewpoint

By repeating the above procedure: for $k = 0, 1, 2, \dots$,

• at the (k + 1)th iteration, for each $j \in \{1, 2, ..., p\}$,

$$w_j^{(k+1)} \leftarrow w_j^{(k)} - \alpha \cdot \frac{\partial \mathcal{J}}{\partial w_j} \Big|_{\mathbf{w} = \mathbf{w}^{(k)}}$$

- $\alpha > 0$ is a **learning rate** (or step size).
 - ▶ The larger it is, the faster $\mathbf{w}^{(k+1)}$ changes relative to $\mathbf{w}^{(k)}$
 - ▶ We'll see later how to tune the learning rate, but values are typically small, e.g. 0.01 or 0.0001.

Gradient descent for OLS

Example

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^p}{\operatorname{argmin}} \mathcal{J}(\mathbf{w}), \qquad \mathcal{J}(\mathbf{w}) = \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2.$$

Update rule in vector form at the k + 1th iteration:

$$\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}} \Big|_{\mathbf{w} = \mathbf{w}^{(k)}}$$
$$= \mathbf{w}^{(k)} + 2\alpha \mathbf{X}^{\top} (\mathbf{y} - \mathbf{X} \mathbf{w}^{(k)}).$$

Initialization: $\mathbf{w}^{(0)} = 0$.

Stopping criteria

When do we stop?

• The objective value stops changing:

$$|\mathcal{J}(\mathbf{w}^{(k+1)}) - \mathcal{J}(\mathbf{w}^{(k)})|$$
 is small, i.e. $\leq 10^{-6}$.

- The parameter stops changing: $\|\mathbf{w}^{(k+1)} \mathbf{w}^{(k)}\|_2$ is small or $\|\mathbf{w}^{(k+1)} \mathbf{w}^{(k)}\|_2 / \|\mathbf{w}^{(k)}\|_2$ is small.
- When we reach the maximum number (M) of iterations, e.g. M = 1000.

Gradient descent for solving the MLE under logistic regression

Recall we would like to solve

$$\min_{\mathbf{w} \in \mathbb{R}^p} \mathcal{J}(\mathbf{w})$$

where

$$\mathcal{J}(\mathbf{w}) = -\ell(\mathbf{w}) = \sum_{i=1}^{n} \left[-y_i \mathbf{x}_i^{\top} \mathbf{w} + \log \left(1 + e^{\mathbf{x}_i^{\top} \mathbf{w}} \right) \right].$$

The gradient at any **w** is that, for any $j \in \{1, ..., p\}$,

$$-\frac{\partial \ell(\mathbf{w})}{\partial w_j} = \sum_{i=1}^n \left[-y_i + \frac{e^{\mathbf{x}_i^\top \mathbf{w}}}{1 + e^{\mathbf{x}_i^\top \mathbf{w}}} \right] x_{ij} \qquad \text{(verify this!)}$$

Updates and stopping criteria

Therefore, at the (k + 1)th iteration, with the learning rate α ,

$$\hat{\mathbf{w}}^{(k+1)} = \hat{\mathbf{w}}^{(k)} - \alpha \sum_{i=1}^{n} \left[-y_i + \frac{e^{\mathbf{x}_i^{\top} \hat{\mathbf{w}}^{(k)}}}{1 + e^{\mathbf{x}_i^{\top} \hat{\mathbf{w}}^{(k)}}} \right] \mathbf{x}_i.$$

Initialization $\mathbf{w}^{(0)} = 0$.

- The objective value stops changing: $|\ell(\hat{\mathbf{w}}^{(k+1)}) \ell(\hat{\mathbf{w}}^{(k)})|$ is small, say, $\leq 10^{-6}$.
- The parameter stops changing: $\|\hat{\mathbf{w}}^{(k+1)} \hat{\mathbf{w}}^{(k)}\|_2$ is small or $\|\hat{\mathbf{w}}^{(k+1)} \hat{\mathbf{w}}^{(k)}\|_2 / \|\hat{\mathbf{w}}^{(k)}\|_2$ is small.
- Stop after M iterations for some specified M, e.g. M = 1000.

When should we expect Gradient Descent (GD) to work?

Recall that we try to solve

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \Theta}{\operatorname{argmin}} \, \mathcal{J}(\mathbf{w}).$$

- ullet Obviously, ${\cal J}$ needs to be differentiable.
- If \mathcal{J} is also a **convex function** and Θ is a convex set, then GD with a suitable choice of step size guarantees to find the optimal solution.
- In many cases, $\Theta = \mathbb{R}^p$ which is convex.

Convex Sets

A set S is convex if for any $\mathbf{x}_0, \mathbf{x}_1 \in S$,

$$(1-\lambda)\mathbf{x}_0+\lambda\mathbf{x}_1\in\mathcal{S}\quad\text{for all }0\leq\lambda\leq1.$$

The Euclidean space \mathbb{R}^p is a convex set.

Convex Sets and Functions

• A function f is **convex** if for any x_0, x_1 in the domain of f,

$$f((1-\lambda)\mathbf{x}_0 + \lambda \mathbf{x}_1) \le (1-\lambda)f(\mathbf{x}_0) + \lambda f(\mathbf{x}_1), \quad \forall \lambda \in [0,1].$$

- Equivalently, the set of points lying above the graph of f is convex.
- Intuitively: the function is bowl-shaped.

How to tell a loss is convex?

- 1. Verify the definition.
- 2. If f is twice differentiable and $f''(x) \ge 0$ for all x, then f is convex.
 - the least-squares loss function $(y t)^2$ is convex as a function of t
 - ▶ the function

$$-yt + \log\left(1 + e^t\right)$$

is convex in t.

3. There are other sufficient conditions for convex, but non-differentiable, functions!

- 4 A composition rule: **linear functions preserve convexity**.
 - ▶ If f is a convex function and g is a linear function, then both $f \circ g$ and $g \circ f$ are convex.
 - the least-square loss $(y \mathbf{x}^{\mathsf{T}} \mathbf{w})^2$ is convex in \mathbf{w}
 - ▶ the negative log-likelihood under logistic regression

$$-y\mathbf{x}^{\mathsf{T}}\mathbf{w} + \log\left(1 + e^{\mathbf{x}^{\mathsf{T}}\mathbf{w}}\right)$$

is convex in w.

- ▶ Both $\sum_{i} (y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{w})^2$ and $\sum_{i} \left[-y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{w} + \log \left(1 + e^{\mathbf{x}_i^{\mathsf{T}} \mathbf{w}} \right) \right]$ are convex in \mathbf{w} .
- 5 There are more composition rules!
- 6 A great book:

Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

Gradient Descent for Linear Regression

• The squared error loss

$$\sum_{i=1}^{\infty} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2$$

of linear regression is a convex function. So there is a unique solution.

- Even in the case when a closed-form solution exists, we sometimes need to use GD.
- Why gradient descent, if we can find the optimum directly?
 - ▶ When *p* is large, GD is more efficient than direct solution
 - ▶ Linear regression solution: $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$
 - ▶ Matrix inversion is an $\mathcal{O}(p^3)$ algorithm
 - ▶ Each GD update costs $\mathcal{O}(np)$
 - Or less with stochastic GD (Stochastic GD, later)
 - Huge difference if $p \gg \sqrt{n}$

Gradient descent for solving the MLE under logistic regression

• The negative log-likelihood

$$-\ell(\mathbf{w}) = \sum_{i=1}^{n} \left[-y_i \mathbf{x}_i^{\top} \mathbf{w} + \log \left(1 + e^{\mathbf{x}_i^{\top} \mathbf{w}} \right) \right]$$

is convex in w.

- So we can use gradient descent to find the minima of the logistic loss!
- GD can be applied to more general settings!

Effect of the learning rate (step size)

• In gradient descent, the learning rate α is a hyperparameter we need to tune. Here are some things that can go wrong:

 Good values are typically small. You should do a grid search if you want good performance (i.e. try 0.1, 0.03, 0.01, ...).

Training Curves

 To diagnose optimization problems, it's useful to look at the training cost: plot the training cost as a function of iteration.

iteration #

- Warning: the training cost could be used to check whether the optimization problem reaches certain convergence. But
 - ▶ It does not tell whether we reach the global minimum or not
 - ▶ It does not tell anything on the performance of the fitted model

Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21

Batch Gradient Descent

- Recall that
 - OLS:

$$\hat{\mathbf{w}}^{(k+1)} = \hat{\mathbf{w}}^{(k)} + \alpha \sum_{i=1}^{n} \left[y_i - \mathbf{x}_i^{\top} \hat{\mathbf{w}}^{(k)} \right] \mathbf{x}_i.$$

Logistic regression:

$$\hat{\mathbf{w}}^{(k+1)} = \hat{\mathbf{w}}^{(k)} + \alpha \sum_{i=1}^{n} \left[y_i - \frac{e^{\mathbf{x}_i^{\mathsf{T}} \hat{\mathbf{w}}^{(k)}}}{1 + e^{\mathbf{x}_i^{\mathsf{T}} \hat{\mathbf{w}}^{(k)}}} \right] \mathbf{x}_i.$$

 Computing the gradient requires summing over all of the training examples, which can be done via matrix / vector operations.
 The fact that it uses all training samples is known as batch training.

- Batch training is impractical if you have a large dataset (e.g. millions of training examples, $n \approx 10$ millions)!
- Stochastic gradient descent (SGD): update the parameters based on the gradient for a single training example.

For each iteration $k \in \{1, 2, \ldots\}$,

- 1. Choose $i \in \{1, ..., n\}$ uniformly at random
- 2. Update the parameters by ONLY using this ith sample,

$$\hat{\mathbf{w}}^{(k+1)} = \hat{\mathbf{w}}^{(k)} + \alpha \left[y_i - \mathbf{x}_i^{\mathsf{T}} \hat{\mathbf{w}}^{(k)} \right] \mathbf{x}_i$$

$$\hat{\mathbf{w}}^{(k+1)} = \hat{\mathbf{w}}^{(k)} + \alpha \left[y_i - \frac{e^{\mathbf{x}_i^{\mathsf{T}} \hat{\mathbf{w}}^{(k)}}}{1 + e^{\mathbf{x}_i^{\mathsf{T}} \hat{\mathbf{w}}^{(k)}}} \right] \mathbf{x}_i.$$

$$\begin{split} \hat{\mathbf{w}}^{(k+1)} &= \hat{\mathbf{w}}^{(k)} + \alpha \left[y_i - \mathbf{x}_i^{\top} \hat{\mathbf{w}}^{(k)} \right] \mathbf{x}_i \\ \hat{\mathbf{w}}^{(k+1)} &= \hat{\mathbf{w}}^{(k)} + \alpha \left[y_i - \frac{e^{\mathbf{x}_i^{\top} \hat{\mathbf{w}}^{(k)}}}{1 + e^{\mathbf{x}_i^{\top} \hat{\mathbf{w}}^{(k)}}} \right] \mathbf{x}_i. \end{split}$$

Pros:

- Computational cost of each SGD update is independent of n!
- SGD can make significant progress before even seeing all the data!
- Mathematical justification: the gradients between SGD and GD have the same expectation for i.i.d. data.

Cons: using single training example to estimate gradient:

• Variance in the estimate may be high

Compromise approach:

- compute the gradients on a randomly chosen medium-sized set of training examples $\mathcal{M} \subset \{1, \dots, n\}$, called a **mini-batch**.
- Stochastic gradients computed on larger mini-batches have smaller variance.
- ullet The mini-batch size $|\mathcal{M}|$ is a hyperparameter that needs to be set.

• Batch gradient descent moves directly downhill. SGD takes steps in a noisy direction, but moves downhill on average.

batch gradient descent

stochastic gradient descent

SGD Learning Rate

 In stochastic training, the learning rate also influences the fluctuations due to the stochasticity of the gradients.

- Typical strategy:
 - Use a large learning rate early in training so you can get close to the optimum
 - Gradually decay the learning rate to reduce the fluctuations