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A general problem of solving a minimization problem

Suppose we want to solve the following problem
w = argmin J (w; D"am) 1= argmin 7 (w)
weo weo

where

° J(W;Dtrain) is a differentiable function in w = (wy, ..., w),)
o J(w:D"™™) depends on D™ as well

@ O is the parameter space of w, typically chosen as a subspace of R”

@ The optimal solution (if exists) must be a critical point,
i.e. point to which the derivative is zero
(partial derivatives to zero for multi-dimensional parameter).
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Finding the optimal solution requires to solve the equations

o Partial derivatives: derivatives of a multivariate function with
respect to one of its arguments.

i~7(W wy) = lim J(w + h,wp) = T (w1, w2)
8W1 1, W2 _h—>0 p

@ The minimum must occur at a point where the partial derivatives are
zero

[NA

8W1

o7

ow,

@ This turns out to give a system of linear equations, which we can
solve analytically in some scenarios.

@ We may also use optimization techniques that iteratively get us closer
to the solution.
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Direct solution

e OLS: '

W = argmin 7 (w; D7) = argmin ||y — Xw||§.
weRP weRP

The partial derivatives w.r.t. w are

oJ T
8_W = -2X (y - XW)

(If not familiar with multi-dimensional derivatives, calculate 2Z y Z and
J

stack them together).
Setting the above equal to zero results

X'xw=x"y, = w=(X'X) "xTy.
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Direct solution

o Ridge:

v“vi\> = argmin J(W;Dtrain) = argmin ||y — Xw||§ + )\||w||§
weRP weRP

The partial derivatives w.r.t. w are

0J T
w - =2X (y — Xw) + 2\w.

Setting the above equal to zero results

-1
(XTX+ ALY =Xy, = = (X'X+AL,) Xy,
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Gradient Descent

@ Now let's see a second way to solve
W = argmin 7 (w)
w

which is more broadly applicable: gradient descent.

@ Many times, we do not have a direct solution to

9T _
8—W—0.

o Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.
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Gradient Descent

We initialize w to something reasonable (e.g. all zeros) and repeatedly
adjust them in the direction of steepest descent of the loss function 7.

4 ‘ (=

wy /
w wo

What is the direction of the steepest descent of 7(w) at w?
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Gradient Descent

@ By definition, the direction of the greatest increase in J(w) at w(®

is its gradient
9T (w)

P
ow w=w(® ek

@ So, we update w in the opposite direction of the gradient at w(®:

(1 _ 0 _  0J(w)

w =W - Q
ow w=w(0)

for some o > 0.

o If « is chosen small, then
j(w(l)) < j(w(o))

unless 0.7 (w)/Ow at w'® is zero.
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Gradient descent: coordinatewise viewpoint

By repeating the above procedure: for k =0,1,2, -+,

@ at the (k + 1)th iteration, for each j € {1,2,...,p},

(k+1) (k) oJ
i W _O"a_ijzw(k)

e a > 0 is a learning rate (or step size).

(k+1) (k)

» The larger it is, the faster w changes relative to w

» We'll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001.
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Gradient descent for OLS

W= argmin J(w),  J(w) = ||y — Xw]|3.

weRP

Update rule in vector form at the k + 1th iteration:

NCS BN O N4

o—
ow w=w(k)

w4 2aXT(y - Xw(k)).

Initialization: w(O) =0.
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Stopping criteria

When do we stop?

@ The objective value stops changing:

17wy = 7w )| is small, ie. <107°.

@ The parameter stops changing: ||w(k+1) - w(k)||2 is small or

Wt — w1,/ w5 is small.

@ When we reach the maximum number (M) of iterations, e.g.
M =1000.
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Gradient descent for solving the MLE under logistic

regression

Recall we would like to solve
min 7 (w)
weRP

where

n

PR e |

i=1

The gradient at any w is that, for any j € {1,..., p},

T
XiW

Xij (verify this!)
1 + X
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Updates and stopping criteria

Therefore, at the (k + 1)th iteration, with the learning rate «,

N O

o (k1) (K e

Wy W”—QZ{—WW}"-
i=1 + e’

Initialization w(o) =0.

@ The objective value stops changing: |€(A(k+1)) (W 'k ))| is small,
say, < 107°

k+1)

@ The parameter stops changing: ||\R/( W(k)||2 is small or

WD — @,/ (1w, is small.

@ Stop after M iterations for some specified M, e.g. M = 1000.
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When should we expect Gradient Descent (GD

Recall that we try to solve

w = argmin 7 (w).
wEeo®

@ Obviously, J needs to be differentiable.

e If J is also a convex function and © is a convex set, then GD with a
suitable choice of step size guarantees to find the optimal solution.

@ In many cases, © = R” which is convex.
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A set S is convex if for any xg,x; € S,
(1=AN)xg+Mx; €S forall0<\<1.

The Euclidean space R” is a convex set.
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Convex Sets and Functions

@ A function f is convex if for any xg, x; in the domain of f,

FI(L = A)xo + Axq) < (1= A)F(x0) + AF(x1), VA e[0,1].

@ Equivalently, the set of
points lying above the (1= \)f(xo)

graph of f is convex. + M (21)
@ Intuitively: the function | | !
is bowl-shaped. FA=Neo | I N A
+ M) . . :
Zo (1= Nzo I
+ A1y
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How to tell a loss is convex?

1. Verify the definition.

2. If f is twice differentiable and f”(x) > 0 for all x, then f is convex.

» the least-squares loss function (y — 1_‘)2 is convex as a function of t

» the function
—yt + Iog(l + et)

is convex in t.

3. There are other sufficient conditions for convex, but
non-differentiable, functions!
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4 A composition rule: linear functions preserve convexity.

» If f is a convex function and g is a linear function, then both f o g and
g o f are convex.

> the least-square loss (y — xTw)2 is convex in w
> the negative log-likelihood under logistic regression
T x'w
—-yx w+log|l+e
is convex in w.

.
» Both ) .(y; — x; w)? and Y. [—y,-x,Tw + log (1 +e" w)] are convex in
w.

5 There are more composition rules!

6 A great book:

Convex Optimization, Stephen Boyd and Lieven Vandenberghe.
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Gradient Descent for Linear Regression

@ The squared error loss

T 2
> (yi—xj w)
i=1

of linear regression is a convex function. So there is a unique solution.

@ Even in the case when a closed-form solution exists, we sometimes
need to use GD.

@ Why gradient descent, if we can find the optimum directly?

» When p is large, GD is more efficient than direct solution

» Linear regression solution: (X' X)'X'y

Matrix inversion is an O(p’) algorithm

Each GD update costs O(np)

Or less with stochastic GD (Stochastic GD, later)
Huge difference if p > /n

vvyVvyy
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Gradient descent for solving the MLE under logistic

regression

@ The negative log-likelihood

—l(w) = i [—y,-x,-Tw + Iog(l + ex’Twﬂ

i=1

is convex in w.
@ So we can use gradient descent to find the minima of the logistic loss!

@ GD can be applied to more general settings!
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Effect of the learning rate (step size)

@ In gradient descent, the learning rate « is a hyperparameter we need
to tune. Here are some things that can go wrong:

B

« too small: « too large:
slow progress oscillations

a much too large:
instability

@ Good values are typically small. You should do a grid search if you
want good performance (i.e. try 0.1,0.03,0.01,...).
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Training Curves

@ To diagnose optimization problems, it's useful to look at the training
cost: plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

@ Warning: the training cost could be used to check whether the
optimization problem reaches certain convergence. But
> It does not tell whether we reach the global minimum or not
» It does not tell anything on the performance of the fitted model
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Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_
regression.pdf#page=21
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http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21

Batch Gradient Descent

@ Recall that
» OLS:

W = @) 4 Z [vi —x/ w!]x;.

» Logistic regression:
BP0
~ (k+1)
'+a Z [y, W) }(
X W

@ Computing the gradient requires summing over all of the training
examples, which can be done via matrix / vector operations.
The fact that it uses all training samples is known as batch training.
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Stochastic Gradient Descent

@ Batch training is impractical if you have a large dataset (e.g. millions of
training examples, n = 10 millions)!

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example.

For each iteration k € {1,2,...},

1. Choose i € {1,...,n} uniformly at random
2. Update the parameters by ONLY using this ith sample,

W(k+1) W(k)

+a [y,- - x,T\fv(k):Ix,-

T A (k)
k+1) (k) e
W( =w ' +a Yi— T . | X
1+ e W
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Stochastic Gradient Descent

L (k+1) (K T . (k
w(+)=w()+a[y,~—x,w( )]x,
k+1 k exiTw(k)
wi D - @ 4 vi — = | X
1+ X W

Pros:
o Computational cost of each SGD update is independent of n!
@ SGD can make significant progress before even seeing all the data!

@ Mathematical justification: the gradients between SGD and GD have

the same expectation for i.i.d. data.

STA314-Lec-Gradient Descent
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Stochastic Gradient Descent

Cons: using single training example to estimate gradient:
@ Variance in the estimate may be high
Compromise approach:
@ compute the gradients on a randomly chosen medium-sized set of

training examples M C {1,..., n}, called a mini-batch.

@ Stochastic gradients computed on larger mini-batches have smaller
variance.

@ The mini-batch size | M| is a hyperparameter that needs to be set.
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Stochastic Gradient Descent

@ Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent
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SGD Learning Rate

@ In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

small learning rate large learning rate

o Typical strategy:
» Use a large learning rate early in training so you can get close to the
optimum
» Gradually decay the learning rate to reduce the fluctuations

Stat methods for ML (UofT) STA314-Lec-Gradient Descent



