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A general problem of solving a minimization problem

Suppose we want to solve the following problem

ŵ = argmin
w∈Θ

J (w;Dtrain) ∶= argmin
w∈Θ

J (w)

where

J (w;Dtrain) is a differentiable function in w = (w1, . . . ,wp)
J (w;Dtrain) depends on Dtrain

as well

Θ is the parameter space of w, typically chosen as a subspace of Rp

The optimal solution (if exists) must be a critical point,
i.e. point to which the derivative is zero
(partial derivatives to zero for multi-dimensional parameter).
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Finding the optimal solution requires to solve the equations

Partial derivatives: derivatives of a multivariate function with
respect to one of its arguments.

∂

∂w1
J (w1,w2) = lim

h→0

J (w1 + h,w2) − J (w1,w2)
h

The minimum must occur at a point where the partial derivatives are
zero

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂J
∂w1

⋮
∂J
∂wp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

This turns out to give a system of linear equations, which we can
solve analytically in some scenarios.

We may also use optimization techniques that iteratively get us closer
to the solution.
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Direct solution

OLS:
ŵ = argmin

w∈Rp
J (w;Dtrain) = argmin

w∈Rp
∥y − Xw∥2

2.

The partial derivatives w.r.t. w are

∂J
∂w

= −2X
⊤(y − Xw).

(If not familiar with multi-dimensional derivatives, calculate ∂J
∂wj

and

stack them together).
Setting the above equal to zero results

X
⊤

Xŵ = X
⊤

y, ⇒ ŵ = (X
⊤

X)
−1

X
⊤

y.

Stat methods for ML (UofT) STA314-Lec-Gradient Descent 4 / 29



Direct solution

Ridge:

ŵ
R
λ = argmin

w∈Rp
J (w;Dtrain) = argmin

w∈Rp
∥y − Xw∥2

2 + λ∥w∥2
2.

The partial derivatives w.r.t. w are

∂J
∂w

= −2X
⊤(y − Xw) + 2λw.

Setting the above equal to zero results

(X
⊤

X + λIp)ŵ
R
λ = X

⊤
y, ⇒ ŵ

R
λ = (X

⊤
X + λIp)

−1
X
⊤

y.

Stat methods for ML (UofT) STA314-Lec-Gradient Descent 5 / 29



Gradient Descent

Now let’s see a second way to solve

ŵ = argmin
w

J (w)

which is more broadly applicable: gradient descent.

Many times, we do not have a direct solution to

∂J
∂w

= 0.

Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

Stat methods for ML (UofT) STA314-Lec-Gradient Descent 6 / 29



Gradient Descent

We initialize w to something reasonable (e.g. all zeros) and repeatedly
adjust them in the direction of steepest descent of the loss function J .

What is the direction of the steepest descent of J (w) at w?
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Gradient Descent

By definition, the direction of the greatest increase in J (w) at w
(0)

is its gradient
∂J (w)
∂w

»»»»»»w=w(0) ∈ Rp

So, we update w in the opposite direction of the gradient at w
(0)

:

w
(1)

= w
(0)
− α ⋅

∂J (w)
∂w

»»»»»»w=w(0)

for some α > 0.

If α is chosen small, then

J (w
(1)) < J (w

(0))

unless ∂J (w)/∂w at w
(0)

is zero.
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Gradient descent: coordinatewise viewpoint

By repeating the above procedure: for k = 0, 1, 2,⋯,

at the (k + 1)th iteration, for each j ∈ {1, 2, . . . , p},

w
(k+1)
j ← w

(k)
j − α ⋅

∂J
∂wj

»»»»»»w=w(k)

α > 0 is a learning rate (or step size).

▶ The larger it is, the faster w
(k+1)

changes relative to w
(k)

▶ We’ll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001.
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Gradient descent for OLS

Example

ŵ = argmin
w∈Rp

J (w), J (w) = ∥y − Xw∥2
2.

Update rule in vector form at the k + 1th iteration:

w
(k+1)

← w
(k)
− α

∂J
∂w

»»»»»»w=w(k)

= w
(k)
+ 2αX

⊤(y − Xw
(k)).

Initialization: w
(0)

= 0.
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Stopping criteria

When do we stop?

The objective value stops changing:

∣J (w
(k+1)) − J (w

(k))∣ is small, i.e. ≤ 10
−6

.

The parameter stops changing: ∥w
(k+1) −w

(k)∥2 is small or

∥w
(k+1) −w

(k)∥2/∥w
(k)∥2 is small.

When we reach the maximum number (M) of iterations, e.g.
M = 1000.
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Gradient descent for solving the MLE under logistic
regression

Recall we would like to solve

min
w∈Rp

J (w)

where

J (w) = −`(w) =
n

∑
i=1

[−yix⊤i w + log (1 + e
x
⊤
i w)] .

The gradient at any w is that, for any j ∈ {1, . . . , p},

−
∂`(w)
∂wj

=

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−yi +

e
x
⊤
i w

1 + ex⊤i w

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xij (verify this!)
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Updates and stopping criteria

Therefore, at the (k + 1)th iteration, with the learning rate α,

ŵ
(k+1)

= ŵ
(k)
− α

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−yi +

e
x
⊤
i ŵ

(k)

1 + ex⊤i ŵ(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi .

Initialization w
(0)

= 0.

The objective value stops changing: ∣`(ŵ
(k+1)) − `(ŵ

(k))∣ is small,
say, ≤ 10

−6
.

The parameter stops changing: ∥ŵ
(k+1) − ŵ

(k)∥2 is small or

∥ŵ
(k+1) − ŵ

(k)∥2/∥ŵ
(k)∥2 is small.

Stop after M iterations for some specified M, e.g. M = 1000.
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When should we expect Gradient Descent (GD) to work?

Recall that we try to solve

ŵ = argmin
w∈Θ

J (w).

Obviously, J needs to be differentiable.

If J is also a convex function and Θ is a convex set, then GD with a
suitable choice of step size guarantees to find the optimal solution.

In many cases, Θ = Rp
which is convex.
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Convex Sets

A set S is convex if for any x0, x1 ∈ S,

(1 − λ)x0 + λx1 ∈ S for all 0 ≤ λ ≤ 1.

The Euclidean space Rp
is a convex set.
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Convex Sets and Functions

A function f is convex if for any x0, x1 in the domain of f ,

f ((1 − λ)x0 + λx1) ≤ (1 − λ)f (x0) + λf (x1), ∀λ ∈ [0, 1].

Equivalently, the set of
points lying above the
graph of f is convex.

Intuitively: the function
is bowl-shaped.
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How to tell a loss is convex?

1. Verify the definition.

2. If f is twice differentiable and f
′′(x) ≥ 0 for all x , then f is convex.

▶ the least-squares loss function (y − t)2
is convex as a function of t

▶ the function
−yt + log (1 + e

t)
is convex in t.

3. There are other sufficient conditions for convex, but
non-differentiable, functions!
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4 A composition rule: linear functions preserve convexity.
▶ If f is a convex function and g is a linear function, then both f ◦ g and

g ◦ f are convex.
▶ the least-square loss (y − x

⊤
w)2

is convex in w
▶ the negative log-likelihood under logistic regression

−yx
⊤

w + log (1 + e
x
⊤

w)

is convex in w.

▶ Both ∑i(yi − x
⊤
i w)2

and ∑i [−yix
⊤
i w + log (1 + e

x
⊤
i w)] are convex in

w.

5 There are more composition rules!

6 A great book:

Convex Optimization, Stephen Boyd and Lieven Vandenberghe.
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Gradient Descent for Linear Regression

The squared error loss

∑
i=1

(yi − x
⊤
i w)2

of linear regression is a convex function. So there is a unique solution.

Even in the case when a closed-form solution exists, we sometimes
need to use GD.

Why gradient descent, if we can find the optimum directly?
▶ When p is large, GD is more efficient than direct solution

▶ Linear regression solution: (X
⊤

X)−1
X
⊤

y
▶ Matrix inversion is an O(p3) algorithm
▶ Each GD update costs O(np)
▶ Or less with stochastic GD (Stochastic GD, later)
▶ Huge difference if p ≫

√
n
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Gradient descent for solving the MLE under logistic
regression

The negative log-likelihood

−`(w) =
n

∑
i=1

[−yix⊤i w + log (1 + e
x
⊤
i w)]

is convex in w.

So we can use gradient descent to find the minima of the logistic loss!

GD can be applied to more general settings!
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Effect of the learning rate (step size)

In gradient descent, the learning rate α is a hyperparameter we need
to tune. Here are some things that can go wrong:

α too small:
slow progress

α too large:
oscillations

α much too large:
instability

Good values are typically small. You should do a grid search if you
want good performance (i.e. try 0.1, 0.03, 0.01, . . .).

Stat methods for ML (UofT) STA314-Lec-Gradient Descent 21 / 29



Training Curves

To diagnose optimization problems, it’s useful to look at the training
cost: plot the training cost as a function of iteration.

Warning: the training cost could be used to check whether the
optimization problem reaches certain convergence. But

▶ It does not tell whether we reach the global minimum or not
▶ It does not tell anything on the performance of the fitted model
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Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_

regression.pdf#page=21
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Batch Gradient Descent

Recall that
▶ OLS:

ŵ
(k+1)

= ŵ
(k)
+ α

n

∑
i=1

[yi − x
⊤
i ŵ

(k)] xi .

▶ Logistic regression:

ŵ
(k+1)

= ŵ
(k)
+ α

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
yi −

e
x
⊤
i ŵ

(k)

1 + ex⊤i ŵ(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi .

Computing the gradient requires summing over all of the training
examples, which can be done via matrix / vector operations.
The fact that it uses all training samples is known as batch training.

Stat methods for ML (UofT) STA314-Lec-Gradient Descent 24 / 29



Stochastic Gradient Descent

Batch training is impractical if you have a large dataset (e.g. millions of
training examples, n ≈ 10 millions)!

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example.

For each iteration k ∈ {1, 2, . . .},

1. Choose i ∈ {1, . . . , n} uniformly at random
2. Update the parameters by ONLY using this ith sample,

ŵ
(k+1)

= ŵ
(k)
+ α [yi − x

⊤
i ŵ

(k)] xi

ŵ
(k+1)

= ŵ
(k)
+ α

⎡⎢⎢⎢⎢⎢⎢⎢⎣
yi −

e
x
⊤
i ŵ

(k)

1 + ex⊤i ŵ(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi .
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Stochastic Gradient Descent

ŵ
(k+1)

= ŵ
(k)
+ α [yi − x

⊤
i ŵ

(k)] xi

ŵ
(k+1)

= ŵ
(k)
+ α

⎡⎢⎢⎢⎢⎢⎢⎢⎣
yi −

e
x
⊤
i ŵ

(k)

1 + ex⊤i ŵ(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi .

Pros:

Computational cost of each SGD update is independent of n!

SGD can make significant progress before even seeing all the data!

Mathematical justification: the gradients between SGD and GD have
the same expectation for i.i.d. data.
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Stochastic Gradient Descent

Cons: using single training example to estimate gradient:

Variance in the estimate may be high

Compromise approach:

compute the gradients on a randomly chosen medium-sized set of
training examples M ⊂ {1, . . . , n}, called a mini-batch.

Stochastic gradients computed on larger mini-batches have smaller
variance.

The mini-batch size ∣M∣ is a hyperparameter that needs to be set.
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Stochastic Gradient Descent

Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent
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SGD Learning Rate

In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

Typical strategy:
▶ Use a large learning rate early in training so you can get close to the

optimum
▶ Gradually decay the learning rate to reduce the fluctuations
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