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Tree-Based Methods

Tree-based method can be applied for both regression and
classification.

Since the method can be summarized in a tree structure, these types
of approaches are known as decision tree methods.

Tree-based methods are simple and useful for interpretation.

However, they typically are not competitive with the best supervised
learning approaches.

We will (later) introduce bagging, random forests, and boosting to
combine multiple decision trees to improve the performance.
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Example of Decision Trees

Make predictions by splitting on features according to a tree structure.

Yes No 

Yes No Yes No 
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Example of Decision Trees

Make predictions by splitting on features according to a tree structure.
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Example of Decision Trees—Discrete features

First, what if features are discrete?

Features:
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Example of Decision Trees—Discrete features

Split discrete features into a partition of possible values.
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Example of Decision Trees—Continuous features

For continuous features, we partition the range by checking whether that
attribute is greater than or less than some threshold.

Decision boundary is made up of rectangles.
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Terminology of Decision Trees

Yes No 

Yes No Yes No 

An internal node means an attribute, i.e., a feature.

Branching is determined by the attribute value.

Children of a node partition the range of the attribute from the parent.

Leaf nodes are predicted outputs.
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Decision Trees—Classification and Regression

Let J be the total number of paths from root to a
leaf.

Each path, j ∈ {1, 2, . . . , J}, defines a region Rj of
the feature space.

Let {(x(j1), y (j1)), . . . , (x(jk), y (jk))} be the training
data points that fall into Rj

Regression tree:

▶ continuous output

▶ leaf value y
Rj typically set to the mean value in {y (j1), . . . , y (jk)}

Classification tree:

▶ discrete output

▶ leaf value y
Rj typically set to the majority label in {y (j1), . . . , y (jk)}
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Regression Decision Trees

Consider the baseball salary data (Hitters data): We want to predict the
salary of a baseball player, based on (1) the number of years that he has
played in the leagues, and (2) the number of hits that he made in the
previous year.

Salary is color-coded from low (blue, green) to high (yellow, red)
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What does a fitted decision tree look like?

At a given internal node, the label (of the form Xj < t) indicates the left-hand branch emanating

from that split, and the right-hand branch corresponds to Xj ≥ t. The number in each leaf

(external node) is the mean of the response for the observations that fall there.
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Partitioned regions for the Hitters data set

Overall, the tree stratifies or segments the players into three regions of
feature space:

R1 = {X ∣Years < 4.5}

R2 = {X ∣Years ≥ 4.5,

Hits < 117.5}

R3 = {X ∣Years ≥ 4.5,

Hits ≥ 117.5}.
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Interpretation of Results

Years is the most important factor in determining Salary, and players
with less experience earn lower salaries than more experienced players.

Given that a player is less experienced, the number of Hits that he
made in the previous year seems to play little role in his Salary.

But among players who have been in the major leagues for five or
more years, the number of Hits made in the previous year does affect
Salary, and players who made more Hits last year tend to have higher
salaries.

Surely an over-simplification, but compared to a regression model, it
is easier to interpret, and has a nice graphical representation.
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How to Build a Regression Tree?

Step 1: We divide the feature space, i.e., the set of possible values for
X1,X2, . . . ,Xp, into J distinct and non-overlapping regions,
R1,R2, . . . ,RJ .

Step 2: For every observation that falls into the region Rj , we make
the same prediction, which is simply the mean of the response values
for the training observations in Rj .
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How to Construct Regions R1,R2, . . . ,RJ?

In theory, the splitted regions could have any shape. However, we
choose to divide the feature space into multi-dimensional rectangles
for ease of interpretation of the resulting predictive model.

The goal is to find rectangles R1,R2, . . . ,RJ that minimize the
residual sum of squares (RSS), given by

J

∑
j=1

∑
i∈Rj

(yi − ȳRj
)2
,

where

ȳRj
=

1

∣Rj ∣
∑
i∈Rj

yi

is the mean response for the training observations in Rj .
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How to Construct Regions R1,R2, . . . ,RJ?

Unfortunately, it is computationally infeasible to enumerate all
possible partitions of the feature space into J boxes.

For this reason, we take a top-down, greedy approach that is known
as recursive binary splitting.

The approach is top-down because it begins at the top of the tree
and then successively splits the feature space; each split is indicated
via two new branches further down on the tree.

It is greedy because at each step of the tree-building process, the
best split is made at that particular step, rather than looking ahead
and picking a split that will lead to a better tree in some future step.
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How to Construct Regions R1,R2, . . . ,RJ?

We first select the feature Xj among all X1, . . . ,Xp, and the cutpoint
s such that splitting the feature space into the regions {X ∣Xj < s}
and {X ∣Xj ≥ s} leads to the greatest possible reduction in RSS.

Mathematically, we seek the value of j ∈ {1, 2, . . . , p} and s ∈ R that
minimize the equation

∑
i∶xi∈R1(j ,s)

(yi − ȳR1
)2
+ ∑

i∶xi∈R2(j ,s)
(yi − ȳR2

)2

where
▶ R1(j , s) = {X ∣Xj < s} and R2(j , s) = {X ∣Xj ≥ s}
▶ ȳR1

and ȳR2
are, respectively, the averaged responses of the training

data in R1(j , s) and R2(j , s).
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How to Construct Regions R1,R2, . . . ,RJ?

Next, we repeat the process, looking for the best feature and the best
cutpoint in order to further split the data, leading to the greatest
reduction of RSS.

However, this time, instead of splitting the entire feature space, we
split one of the two previously identified regions. We now have three
regions.

The process continues until a stopping criterion is reached
▶ we may stop when no region contains more than 5 observations

Once R1,R2, . . . ,RJ are identified, we predict the response for a given
test point using the averaged response of the training observations in
the region.
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An Example with 5 Regions
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An Example with 5 Regions

Top Left: A partition of two-dimensional feature space that could not
result from recursive binary splitting.

Top Right: The output of recursive binary splitting on a
two-dimensional example.

Bottom Left: A tree corresponding to the partition in the top right
panel.

Bottom Right: A perspective plot of the prediction surface
corresponding to that tree.
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Tree Pruning

The process described above may produce good predictions on the
training set, but is likely to overfit the data, leading to poor test set
performance.

▶ Consider the tree that has one observation per region.

A smaller tree with fewer splits (that is, fewer regions R1,R2, ...,RJ)
might lead to lower variance and better interpretation at the cost of a
little bias.

Intuitively, our goal is to select a subtree that leads to the lowest test
error rate. However, estimating the cross-validation error for every
possible subtree is not feasible, since the number of possible subtrees
is large.
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Tree Pruning

A common strategy is to grow a very large tree T0, and then prune it
back in order to obtain a subtree. We use the cost complexity
pruning, a.k.a. weakest link pruning.

We consider a sequence of trees indexed by a nonnegative tuning
parameter α. For each value of α find a subtree T ⊂ T0 such that

∣T ∣
∑
m=1

∑
i∶xi∈Rm

(yi − ȳRm
)2
+ α∣T ∣,

is minimized. Here ∣T ∣ indicates the number of terminal nodes of the
tree T .

▶ The tuning parameter α controls a trade-off between the subtree’s
complexity and its fit to the training data.

▶ α = 0 gives T0.
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Tree Pruning

It turns out that as we increase α from 0, branches get pruned from
the tree in a nested and predictable fashion, so obtaining the whole
sequence of subtrees as a function of α is easy.

We can select a value of α using a validation set or using
cross-validation.

We then return to the full data set and obtain the subtree
corresponding to α.
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Algorithm for Building a Regression Tree
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Baseball Example

First, we randomly divided the data set in half, yielding 132
observations in the training set and 131 observations in the test set.

We then built a large regression tree on the training data and varied
α to create subtrees with different numbers of terminal nodes.

Finally, we performed six-fold cross-validation in order to estimate the
cross-validated MSE of the trees as a function of α.
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Hitters data set
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Hitters data set: the unpruned tree
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Hitters data set: the pruned tree
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Classification Trees

A classification tree is very similar to a regression tree, except that it
is used to predict a qualitative response rather than a quantitative
one.

For a classification tree, we predict that each observation belongs to
the most commonly occurring class of training observations in the
region to which it belongs.

Just as in the regression setting, we use recursive binary splitting to
grow a classification tree.

But, RSS cannot be used as a criterion for making the binary splits.
What metric should we use instead?
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Metrics used for classification trees

A natural alternative to RSS is the 0-1 misclassification error rate.
For region Rm with K classes of labels: for k ∈ {1, . . . ,K},

p̂mk =
1

∣Rm∣ ∑
i∶xi∈Rm

1{yi = k}

The misclassification error rate in region Rm is

1 − max
k∈{1,...,K}

p̂mk .

However misclassification error is not sufficiently sensitive for the
change of p̂mk , hence not suitable for finding the splits for building
classification trees.
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Choosing a Good Split

Consider the following data. Let’s split on width.
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Choosing a Good Split

Recall: classify by majority.

A and B have the same misclassification rate, so which is the best split?
Vote!
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Choosing a Good Split

Case A feels like a better split, because the left-hand region is very certain
about whether the fruit is an orange.

Can we quantify this?

Stat methods for ML (UofT) STA314-Lec-DT 33 / 45



Quantifying Uncertainty

The entropy of a discrete random variable is a number that quantifies the
uncertainty inherent in its possible outcomes.

The mathematical definition of entropy that we give in a few slides may
seem arbitrary, but it can be motivated axiomatically.

▶ If you’re interested, check: Information Theory by Robert Ash.

To explain entropy, consider flipping two different coins...
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We Flip Two Different Coins

Sequence 1: 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ... ?	

Sequence 2: 
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?	

16 

2 
8 10 

0	 1	

versus 

0	 1	
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Quantifying Uncertainty

The entropy of a loaded coin with probability p of heads is given by

−p log2(p) − (1 − p) log2(1 − p)

0	 1	

8/9 

1/9 

−
8

9
log2

8

9
−

1

9
log2

1

9
≈

1

2

0	 1	

4/9 5/9 

−
4

9
log2

4

9
−

5

9
log2

5

9
≈ 0.99

Notice: the coin whose outcomes are more certain has a lower entropy.

In the extreme case p = 0 or p = 1, we were certain of the outcome before
observing. So, we gained no certainty by observing it, i.e., entropy is 0.
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Revisiting Our Original Example

Let’s compute the entropies associated with this split

Left branching: p̂orange = 3/4 and p̂lemon = 1/4. Its entropy is

− 3
4

log2
3
4
− 1

4
log2

1
4
≈ 0.81.

Right branching: p̂orange = 2/3 and p̂lemon = 1/3. Its entropy is

− 2
3

log2
2
3
− 1

3
log2

1
3
≈ 0.92

The summation of entropies is 1.73.
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Revisiting Our Original Example

What is the information gain of split A? Very informative!

Left branching: p̂orange = 1 and p̂lemon = 0. Its entropy is 0.

Right branching: p̂orange = 3/5 and p̂lemon = 2/5. Its entropy is

− 3
5

log2
3
5
− 2

5
log2

2
5
≈ 0.97

The summation of entropies is 0.97. So we have less uncertainty for the
second split. Uncertainty can also be understood as node purity.
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Deviance and Gini index

Entropy based metric is called Deviance, given by

−
K

∑
k=1

p̂mk log p̂mk ,

for region Rm.

Another popular metric is Gini index, defined by

K

∑
k=1

p̂mk(1 − p̂mk),

a measure of total variance across the K classes.

Both Deviance and Gini index are small if all of the p̂mk ’s are close to
zero or one. They are measures of node purity – a small value
indicates that a node contains observations that most of them come
from a single, dominant class.
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Misclassification error rate, Gini index and Deviance

It turns out that Gini index and Deviance are quite similar numerically.

On the one hand, for building a classification tree, either Gini index
or Deviance can be used for finding best splits, since they are more
sensitive to node purity than the misclassification error rate.

On the other hand, all Gini index, Deviance and misclassification error
can be used for pruning the tree, but the misclassification error is
preferable if classification accuracy is the final goal.
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Heart Data

These data contain a binary outcome HD for 303 patients who
presented with chest pain.

An outcome value of Yes indicates the presence of heart disease based
on an angiographic test, while No means no heart disease.

There are 13 features including Age, Sex, Chol (a cholesterol
measurement), Thal (maximum heart rate achieved) and other heart
and lung function measurements.

Cross-validation yields a tree with six terminal nodes.
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Heart Data: the unpruned fitted decision tree.
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Heart Data

Left: Cross-validation error, training, and test error, for different sizes of the pruned tree.

Right: The pruned tree corresponding to the minimal CV error.

Stat methods for ML (UofT) STA314-Lec-DT 43 / 45



Trees Versus Linear Models

The linear model says

f (X ) = β0 +
p

∑
j=1

βjXj ,

whereas the regression tree says

f (X ) =
J

∑
m=1

cm 1{X ∈ Rm}.

If f (X ) ≈ X
⊤
β, then linear regression will likely work well.

If instead there is a highly non-linear and complex relationship
between X and Y , then decision trees performs better.

The relative performances of tree-based and classical approaches can
be assessed by estimating the test error, using either cross-validation
or the validation set approach.
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Advantages and Disadvantages of Trees

Trees are self-explanatory. In fact, they are even easier to explain than
linear regression!

Some people believe that decision trees more closely mimic human
decision-making.

Trees can easily handle qualitative features without the need to create
dummy variables.

But, trees generally do not have the same predictive power as other
regression and classification approaches.

Relatedly, trees could be very non-robust. In other words, a small
change in the data can lead to a drastically different estimated tree.

Nevertheless, by aggregating many trees (via bagging, random forests, and
boosting), the predictive performance can be substantially improved.
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