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Discriminant Analysis

Logistic regression directly parametrizes

P(Y = k ∣ X = x), ∀k ∈ C .

By contrast, Discriminant Analysis parametrizes the distribution of

X ∣ Y = k , ∀k ∈ C .

Normal distributions are oftentimes used.
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Discriminant Analysis

What does parametrizing X ∣ Y = k buy us?

By Bayes’ theorem,

P(Y = k ∣ X = x) = P(X = x ∣ Y = k)P(Y = k)
P(X = x) .

Thus, to compare two classes k , k
′
∈ C with k ≠ k

′

P(Y = k ∣ X = x) ≥ P(Y = k
′ ∣ X = x)

⟺ P(X = x ∣ Y = k)P(Y = k) ≥ P(X = x ∣ Y = k
′)P(Y = k

′)
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Notation for discriminant analysis

Suppose we have K classes, C = {0, 1, 2, . . . ,K − 1}. For any k ∈ C ,

We write
πk ∶= P(Y = k)

as the prior probability that a randomly chosen observation comes
from the kth class.

Write
fk(x) ∶= P(X = x ∣ Y = k)

as the conditional density function of X = x from class k .

In discriminant analysis, parametric assumption is assumed on
fk(x).
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The Bayes rule

By the Bayes’ theorem,

pk(x) ∶= P(Y = k ∣ X = x) = πk fk(x)
∑`∈C π`f`(x)

is called the posterior probability, i.e. the probability that an
observation belongs to the kth class given its feature.

According to the Bayes classifier, we should classify a new point x
according to

arg max
k∈C

pk(x) = arg max
k∈C

πk fk(x)
∑`∈C π`f`(x) = arg max

k∈C
πk fk(x).
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Discriminant Analysis for p = 1

Assume that

X ∣ Y = k ∼ N(µk , σ2
k), ∀k ∈ C ,

namely,

fk(x) =
1√

2πσk
e
− 1

2σ2
k

(x−µk)2

.

Linear Discriminant Analysis (LDA) further assumes

σ
2
0 = σ

2
1 =⋯ = σ

2
K−1 = σ

2
.
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Linear Discriminant Analysis for p = 1

As a result,

pk(x) =
πk fk(x)

∑`∈C π`f`(x)
=

πke
− 1

2σ2 (x−µk)
2

∑`∈C π`e
− 1

2σ2 (x−µ`)2
.

The Bayes rule classifies X = x to

arg max
k∈C

pk(x) = arg max
k∈C

log (pk(x))

= arg max
k∈C

µk

σ2
x −

µ
2
k

2σ2
+ log πk

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
δk(x)

(verify!)

The name LDA is due to the fact that the discriminant function
δk(x) is a linear function in x .
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Linear Discriminant Analysis for p = 1

For binary case, i.e. K = 2,

arg max
k∈{0,1}

pk(x) = arg max
k∈{0,1}

[µk
σ2

x −
µ

2
k

2σ2
+ log πk]

If the priors are equal π0 = π1 and suppose µ1 ≥ µ0, then the Bayes
classifier assigns X = x to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if x < µ0+µ1

2

1 if x ≥ µ0+µ1

2

The line x = (µ0 + µ1)/2 is called the Bayes decision boundary.
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Example of LDA in binary classification

Consider µ0 = −1.5, µ1 = 1.5, and σ = 1. The curves are p0(x) (green)
and p1(x) (red). The dashed vertical lines are the Bayes decision boundary.

f
∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if x < µ0+µ1

2
= 0

1 if x ≥ µ0+µ1

2
= 0
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Compute the Bayes classifier

If we know µ0, . . . , µK−1, σ
2

and π0, . . . , πK−1, then we can construct
the Bayes rule

arg max
k∈C

δk(x) = arg max
k∈C

{µk
σ2

x −
µ

2
k

2σ2
+ log πk} .

However, we typically don’t know these parameters. We need to use
the training data to estimate them!
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Estimation under LDA

Given training data (x1, y1), . . . , (xn, yn), for all k ∈ C ,

We have

nk =
n

∑
i=1

1{yi = k}.

We estimate πk by

π̂k =
nk
n .

We estimate µk and σ
2

by

µ̂k =
1
nk

∑
1≤i≤n∶yi=k

xi

σ̂
2
=

1
n

K

∑
k=1

∑
1≤i≤n∶yi=k

(xi − µ̂k)2
.

These are actually the MLEs.
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The LDA classifier

We estimate δk(x) by the plug-in estimator

δ̂k(x) =
µ̂k

σ̂2
x −

µ̂
2
k

2σ̂2
+ log π̂k .

The LDA classifier assigns x to

arg max
k∈C

δ̂k(x).

How about the case when p > 1?
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Linear Discriminant Analysis for p > 1

Recall that the posterior probability has the form

P(Y = k ∣ X = x) = πk fk(x)
∑`∈C π`f`(x) ,

Now, we assume

X ∣ Y = k ∼ Np(µk ,Σ), ∀k ∈ C ,

that is,

fk(x) = 1

(2π)p/2∣Σ∣1/2
e
− 1

2
(x−µk)⊤Σ

−1(x−µk).
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The discriminant function becomes

δk(x) = x
⊤

Σ
−1
µk −

1

2
µ
⊤
k Σ

−1
µk + log πk

c.f. the univariate case

δk(x) = µk

σ2
x −

µ
2
k

2σ2
+ log πk .

The Bayes decision boundaries are the set of x for which

δk(x) = δ`(x), ∀k ≠ `,

which are again linear hyperplanes in Rp
.
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Example

There are three classes (orange, green and blue) with two features X1 and
X2. Dashed lines are the Bayes decision boundaries. Solid lines are their
estimates based on the LDA.
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Estimation under LDA for p > 1

Given the training data (x1, y1), . . . , (xn, yn), for any k ∈ C ,

We have

nk =
n

∑
i=1

1{yi = k}.

We estimate πk by

π̂k =
nk
n .

The slight difference is to estimate µk and Σ by

µ̂k =
1
nk

∑
1≤i≤n∶yi=k

xi

Σ̂ =
1
n

K

∑
k=1

∑
1≤i≤n∶yi=k

(xi − µ̂k)(xi − µ̂k)⊤.
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A plugin rule for estimating discriminant functions

We use the plugin estimator

δ̂k(x) = x
⊤

Σ̂
−1
µ̂k −

1

2
µ̂
⊤
k Σ̂

−1
µ̂k + log π̂k , ∀k ∈ C .

The resulting LDA classifier is

arg max
k∈C

δ̂k(x).

Stat methods for ML (UofT) STA314-Lec-DA 17 / 28



Logistic Regression v.s. LDA: similarity

For binary classification of LDA , one can show that

log ( p1(x)
1 − p1(x)) = log (p1(x)

p0(x))

= c0 + c1x1 +⋯+ cpxp,

where the c0, c1, . . . , cp depends on π0, π1, µ0, µ1 and Σ.

The log-odds under LDA is also a linear form in both the parameters and
the features (c.f. the logistic regression).
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Logistic Regression v.s. LDA: differences

1. LDA makes more assumption by specifying X ∣ Y .

2. The parameters are estimated differently.
▶ Logistic regression uses the conditional likelihood based on P(Y ∣X )

(known as discriminative learning).

▶ LDA uses the full likelihood based on P(X ,Y ) (known as generative
learning).

3. If classes are well-separated, then logistic regression is not advocated.
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Other forms of Discriminant Analysis

LDA specifies
X ∣ Y = k ∼ N(µk ,Σ), ∀k ∈ C .

Other discriminant analyses change the specifications for X ∣ Y = k.

Quadratic discriminant analysis (QDA) assumes

X ∣ Y = k ∼ N(µk ,Σk), ∀k ∈ C ,

by allowing different Σk across all classes.
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Quadratic Discriminant Analysis: p = 1

Assume that

X ∣ Y = k ∼ N(µk , σ2
k), ∀k ∈ C ,

namely,

fk(x) =
1√

2πσk
e
− 1

2σ2
k

(x−µk)2

.

As a result,

pk(x) =
πk fk(x)

∑`∈C π`f`(x)
=

πk
σk
e
− 1

2σ2
k

(x−µk)2

∑`∈C
π`
σ`
e
− 1

2σ2
`

(x−µ`)2
.
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Decision boundary of QDA

The Bayes rule classifies X = x to

arg max
k∈C

pk(x) = arg max
k∈C

log (pk(x))

= arg max
k∈C

log [πkσk e
− 1

2σ2
k

(x−µk)2

]

= arg max
k∈C

−
x

2

2σ2
k

+
µk

σ2
k

x −
µ

2
k

2σ2
k

+ log πk − log(σk)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

δk(x)

The name QDA is due to the fact that δk(x) is quadratic in x .
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Quadratic Discriminant Analysis: p ≥ 1

X ∣ Y = k ∼ Np(µk ,Σk)
The discriminant function becomes

δk(x) = log [ πk

∣Σk∣1/2
e
− 1

2
(x−µk)⊤Σk

−1(x−µk)]

= x
⊤

Σ
−1
k µk −

1

2
µ
⊤
k Σ

−1
k µk + log πk −

1

2
x
⊤

Σ
−1
k x −

1

2
log ∣Σk∣.

The decision boundary between any class k and class `

{x ∈ Rp
∶ δk(x) = δ`(x)}

is quadratic in x
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Decision boundaries of LDA and QDA

Decision boundaries of the Bayes classifier (purple dashed), LDA (black
dotted), and QDA (green solid) in two scenarios.
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Estimation of QDA

Given training data (x1, y1), . . . , (xn, yn), for any k ∈ C ,

We have

nk =
n

∑
i=1

1{yi = k}.

We estimate πk by

π̂k =
nk
n .

We estimate µk and Σk by

µ̂k =
1
nk

∑
1≤i≤n∶yi=k

xi

Σ̂k =
1
nk

∑
1≤i≤n∶yi=k

(xi − µ̂k)(xi − µ̂k)⊤.

Plugin estimator for δ(x).
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Potential problems for LDA and QDA in high dimension

LDA: we have

(K − 1) + pK +
p(p + 1)

2

number of parameters to estimate.

QDA: we have

(K − 1) + pK +
p(p + 1)

2
K

number of parameters to estimate.

The estimation error is large when p is large comparing to n.
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Naive Bayes

Other discriminant analyses: different density of X ∣ Y = k, including
non-parametric approaches.

Naive Bayes assumes

X1, . . . ,Xp are independent given Y = k

so that

fk(x) =
p

∏
j=1

fk,j(xj)

It is easy to deal with both quantitative and categorical features.

Despite the strong independence assumption within class, naive Bayes
often produces good classification results.
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Naive Bayes

For Gaussian density

Xj ∣ Y = k ∼ N(µk,j , σ2
k,j),

this means that Σk = diag(σ2
k,1, σ

2
k,2, . . . , σ

2
k,p) and

fk(x) =
p

∏
j=1

1

σk,j
√

2π
e
− 1

2σ2
k,j

(xj−µk,j)2

The discriminant function is

δk(x) = −1

2

p

∑
j=1

(xj − µkj)2

σ2
kj

+ log πk −
1

2

p

∑
j=1

log σ
2
kj .
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