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Discriminant Analysis

o Logistic regression directly parametrizes

P(Y=k|X=x), VYkeC.

@ By contrast, Discriminant Analysis parametrizes the distribution of
XY =k, VkeC.

Normal distributions are oftentimes used.
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Discriminant Analysis

What does parametrizing X | Y = k buy us?

o By Bayes' theorem,

P(X =x|Y = k)P(Y = k)

P(Y =k| X =x) = X =)

Thus, to compare two classes k, k' e C with k k'

P(Y=k|X=x) =2 P(Y=kK|X=x)
= PX=x|Y=kP(Y=k) 2 P(X=x|Y=KPY=k)
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Notation for discriminant analysis

Suppose we have K classes, C = {0,1,2,...,K —1}. Forany k € C,
o We write
= P(Y = k)

as the prior probability that a randomly chosen observation comes
from the kth class.

o Write
fi(x):=P(X=x|Y =k)

as the conditional density function of X = x from class k.

@ In discriminant analysis, parametric assumption is assumed on
fi(x).
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The Bayes rule

@ By the Bayes' theorem,

i fr(x)
Y rec Tefu(x)

is called the posterior probability, i.e. the probability that an
observation belongs to the kth class given its feature.

p(x):=P(Y =k | X=x) =

@ According to the Bayes classifier, we should classify a new point x
according to

Tifi(x)

arg max pr(x) = arg max =—————
¢ Yrecmefe(x)

= arg max mf(x).
g max i fr(x)

Stat methods for ML (UofT) STA314-Lec-DA 5/28



Discriminant Analysis for p = 1

@ Assume that
X|Y=k~N(uop), VkeC,

namely,
Sl (Y2
1 2gi(X i)

e
V2mwoy

fi(x) =

e Linear Discriminant Analysis (LDA) further assumes

2 2 _ _
0Og =01 =+ =0K-1=0 .
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Linear Discriminant Analysis for p =1

@ As a result,

— 1 (x—
) T fie(X) e 5,2 (X= 1)
Pr\Xx) = = .
Y vec mefe(x) Y ec We—%%(x—w)z
@ The Bayes rule classifies X = x to
= I
argmax py(x) = argmax log (p«(x))
2
= arg max %x — ;Tkz + log mx (verify!)
5kEX)

The name LDA is due to the fact that the discriminant function
0k (x) is a linear function in x.
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Linear Discriminant Analysis for p =1

For binary case, i.e. K =2,

2
arg max px(x) = arg max Py - Fi o log )
ke{0.1} ke{o1} | 02" 202

@ If the priors are equal my = w1 and suppose 1 = g, then the Bayes
classifier assigns X = x to

0 if x < totia
2

1 ifx > B2
- 2

The line x = (g + p1)/2 is called the Bayes decision boundary.
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Example of LDA in binary classification

Consider p9 = —1.5, 3 = 1.5, and o = 1. The curves are py(x) (green)
and p;(x) (red). The dashed vertical lines are the Bayes decision boundary.

0 ifx<%:o

f(x) =

1 ifxz 2 =0

m=.3, mp=.7

1
1
!
v/ \
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1
!
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Compute the Bayes classifier

o If we know g, ..., fiKk-1, o2 and o, ..., TK_1, then we can construct
the Bayes rule
KB N2
—gx - —k2 + log 7y ¢ .
20

arg max d,(x) = arg max
g max k(x) gmax -

C

@ However, we typically don't know these parameters. We need to use
the training data to estimate them!
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Estimation under LDA

Given training data (xq,y1),..., (X, yn), forall k € C,

@ We have
n

ny = Zl{}/i = k}.

i=1
@ We estimate 7, by
A Nk
Tk = 7
o We estimate py and o’ by
L1
Pk = e Z Xi
l<isniy;=k
K
L2 1 N N2
=%y (% — fue)”.

These are actually the MLEs.
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The LDA classifier

@ We estimate d,(x) by the plug-in estimator
N iz
ko4 log 7.

Sk(x) = ~D 26’2

argmax 0y (x).

@ The LDA classifier assigns x to
keC

@ How about the case when p > 17
12 /28
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Linear Discriminant Analysis for p > 1

@ Recall that the posterior probability has the form

B oy mh(x)
P(Y =k | X =x) = —Zeecmf@(x)’

@ Now, we assume
X|Y=k~ Np(,uk,Z), YkeC,
that is,

1 L) T )
X)=———FF——-¢e 2 .
)=
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@ The discriminant function becomes

Te-1 1 7.1
Ok(X) =x T “pue = i X puc + log

c.f. the univariate case

Ok (x) = %x - ZMTI( + log .

@ The Bayes decision boundaries are the set of x for which
Ok(x) = 0p(x), Vk=#{,

which are again linear hyperplanes in R”.
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Example

There are three classes (orange, green and blue) with two features X; and
X,. Dashed lines are the Bayes decision boundaries. Solid lines are their
estimates based on the LDA.
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Estimation under LDA for p > 1

Given the training data (x1,y1),...,(X,,y,), for any k € C,

o We have N
N = Zl{}/i = k}.
i=1
@ We estimate 7y by
A Nk
Tk = -

The slight difference is to estimate uy and X by

™M>

1]
S|+
M=

(xi = ) (xi = fie) -
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A plugin rule for estimating discriminant functions

@ We use the plugin estimator

. . 1
Si(x) =x' £y - ik E g +log 7y, Vke C.

@ The resulting LDA classifier is

81 (x).
arg max d,(x)
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Logistic Regression v.s. LDA: similarity

For binary classification of LDA , one can show that

o (1257) = e ()
Co+ Cixq + o+ CpXp,

where the ¢, ¢y, ..., ¢, depends on g, 71, 19, 41 and 2.

The log-odds under LDA is also a linear form in both the parameters and
the features (c.f. the logistic regression).
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Logistic Regression v.s. LDA: differences

1. LDA makes more assumption by specifying X | Y.

2. The parameters are estimated differently.

» Logistic regression uses the conditional likelihood based on P(Y|X)
(known as discriminative learning).

» LDA uses the full likelihood based on P(X, Y) (known as generative
learning).

3. If classes are well-separated, then logistic regression is not advocated.
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Other forms of Discriminant Analysis

LDA specifies
XY =k~N(ug,X), VkeC.

Other discriminant analyses change the specifications for X | Y = k.

e Quadratic discriminant analysis (QDA) assumes
X|YZk~N(Mk’Zk)’ VkEC,

by allowing different ¥, across all classes.
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Quadratic Discriminant Analysis: p =1

@ Assume that
X|Y=k~N(u,or), VYkeC,

namely, ) )
1 == (x—p)
fi(x) = Nors e ¥k <

O k

@ As a result,

™ 207 L (x—pu)’

mh(x)  5C

ZEECWZQ(X) Z Cmge 2
LeC g,

pk(X) = (X MZ)Q‘
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Decision boundary of QDA

The Bayes rule classifies X = x to

= |
argmax py(x) = argmax log (px(x))

1 2
Tk —ng(x—uk)
argmax log| —e *
keC Ok

2 2
X k
= argmax —— + M—2x - u—kz + log 7 — log (o)
keC 20, O} 20
Ik (x)

The name QDA is due to the fact that §,(x) is quadratic in x.
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Quadratic Discriminant Analysis: p = 1

XY =k~ Np(pue, k)

The discriminant function becomes

1 T -1
Ok(x) = |0g[ Tk g2 (x=me) Zx (X—uk)]

|, |22

2

The decision boundary between any class k and class ¢

Te-1 1 11 1 11 1
=X Xy fk— 5hk Tk Mk H10g T — 5X Xy X—§|Og|zk|‘

{x € R” : 54 (x) = 6,(x)}

is quadratic in x
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Decision boundaries of LDA and QDA

Decision boundaries of the Bayes classifier (purple dashed), LDA (black
dotted), and QDA (green solid) in two scenarios.
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Estimation of QDA

Given training data (xq,y1),..., (Xn, ¥,), for any k € C,

@ We have .
N = Zl{YI = k}.
i=1
o We estimate 7y by
A Nk
Tk = -
@ We estimate py and X by
. 1
Pk = ”_k Z X
l<isniyi=k
~ 1 R T
Tk=g, z (xi = ) (xj = fue) -
l<isn:y;=k

@ Plugin estimator for 6(x).
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Potential problems for LDA and QDA in high dimension

o LDA: we have

+1
(K=1)+pK + %
number of parameters to estimate.
o QDA: we have
+1
(K =1) + pK + %K

number of parameters to estimate.

@ The estimation error is large when p is large comparing to n.
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Other discriminant analyses: different density of X | Y = k, including
non-parametric approaches.
o Naive Bayes assumes
Xi,...,Xp are independent given Y = k

so that

f(x) = i)

j=1

@ It is easy to deal with both quantitative and categorical features.

@ Despite the strong independence assumption within class, naive Bayes
often produces good classification results.
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o For Gaussian density
2
Xi | Y =k~ N(pj,0k),

this means that X, = diag(ai,l, O’i’2, o ,ai,p) and

p L —pi)?
1 7 (X1, ;)
flx) = [ | ——==e *

@ The discriminant function is

1L p )
Ok(x) = ) Z + log my — Z log 0.
j:1
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