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A theoretical understanding of the role of regularization

Consider the linear regression

Y = X
⊤
β + ε.

Suppose we have i.i.d. observations (x1, y1), . . . , (xn, yn). Further assume

the design matrix X = (x1, . . . , xn)⊤ ∈ Rn×p
is deterministic and

orthonormal, i.e.
1
nX

⊤
X = Ip.

Consider the ridge estimator β̂
R
λ of β for any given regularization

parameter λ ≥ 0. Let β̂ be the OLS estimator of β.

We now contrast the behaviour of the ridge estimator with that of the
OLS estimator side by side.
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Criteria:

β̂ = argmin
β

∥y − Xβ∥2
2

β̂
R
λ = argmin

β
∥y − Xβ∥2

2 + λ∥β∥2
2.

Closed-form solutions:

β̂ = (X⊤
X)−1X⊤

y =
1
nX

⊤
y

β̂
R
λ = (X⊤

X + λIp)−1X⊤
y =

1

n + λ
X

⊤
y.

We examine their statistical properties of estimating β in terms of
▶ bias
▶ variance
▶ mean squared error
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Bias of the OLS estimator

OLS: unbiased

E[β̂] = E [1
nX

⊤
y] by

1
nX

⊤
X = Ip

= E [1
nX

⊤(Xβ + ε)] by y = Xβ + ε

=
1
nX

⊤
Xβ + E [1

nX
⊤
ε] X and β are deterministic

=
1
nX

⊤
Xβ +

1
n

n

∑
i=1

xi E [εi] by E[εi] = 0

= β.
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Bias of the ridge estimator

By repeating similar arguments as before:

Ridge: biased

E[β̂R
λ ] = E [ 1

n + λ
X

⊤
y]

= E [ 1

n + λ
X

⊤(Xβ + ε)]

=
1

n + λ
X

⊤
Xβ + E [ 1

n + λ
X

⊤
ε]

=
n

n + λ
β

= β −
λ

n + λ
β.
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Variance of the OLS and ridge estimators

OLS:

Cov(β̂) = 1

n2
X

⊤
Cov(y)X

=
σ
2

n2
X

⊤
X by Cov(y) = σ2In

=
σ
2

n Ip.

Ridge:

Cov(β̂R
λ ) =

1

(n + λ)2
X

⊤
Cov(y)X =

σ
2
n

(n + λ)2
Ip.
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`2 estimation error of the OLS estimator

OLS:

E[∥β̂ − β∥2
2]

= E [(β̂ − β)⊤(β̂ − β)]

= E [(β̂ − E[β̂] + E[β̂] − β)⊤ (β̂ − E[β̂] + E[β̂] − β)]

= E [(β̂ − E[β̂])⊤ (β̂ − E[β̂])] + E [(E[β̂] − β)⊤ (E[β̂] − β)]

= traceE [(β̂ − E[β̂]) (β̂ − E[β̂])⊤] + (E[β̂] − β)⊤ (E[β̂] − β)

= trace [Cov(β̂)] + ÂÂÂÂÂE[β̂] − β
ÂÂÂÂÂ
2

2

=
σ
2
p

nÍ ÒÒÒÒÒÒÑÒÒÒÒÒÒÏ
Variance

+ 0ÍÑÏ
Bias

.
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`2 estimation error of the ridge predictor

Ridge:

E[∥β̂R
λ − β∥2

2] = trace [Cov(β̂R
λ )] +

ÂÂÂÂÂÂE[β̂
R
λ ] − β

ÂÂÂÂÂÂ
2

2

=
σ
2
pn

(n + λ)2
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Variance

+ ( λ

n + λ
)
2

∥β∥2
2

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Bias

.

Recall for OLS:

E[∥β̂ − β∥2
2] =

σ
2
p

nÍ ÒÒÒÒÒÒÑÒÒÒÒÒÒÏ
Variance

+ 0ÍÑÏ
Bias

.

Remark: Ridge estimator has smaller variance by paying extra bias as the
price. This is the essential idea of regularization! The balance between
variance and bias of ridge is controlled by the magnitude of λ.
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Same phenomenon for prediction

Since we predict X = x by

OLS:
ŷ = x

⊤
β̂

Ridge:

ŷ
R
λ = x

⊤
β̂
R
λ

Regularization controlled by λ has the same effects on prediction MSE.
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Same phenomenon for the Lasso

The same idea holds for the Lasso. But the analysis of the MSE
estimation error of the Lasso is less straightforward than that of Ridge.
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