Linear Algebra Review ${ }^{1}$

Xin Bing

Department of Statistical Sciences
University of Toronto
${ }^{1}$ Slides adapted from lan Goodfellow's Deep Learning textbook lectures

About this tutorial

- Not a comprehensive survey of all of linear algebra.
- Focused on the subset most relevant to machine learning.
- Larger subset: e.g., Linear Algebra by Gilbert Strang

Scalars

- A scalar is a single number
- Integers, real numbers, rational numbers, etc.
- Typically denoted in italic font:

$$
a, n, x
$$

Vectors

- A vector is an array of d numbers
- x_{i} be integer, real, binary, etc.
- Notation to denote type and size:

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right]
$$

$$
x \in \mathbb{R}^{d}
$$

Matrices

- A matrix is an array of numbers with two indices
- $A_{i, j}$ be integer, real, binary, etc.
- Notation to denote type and size:

$$
A \in \mathbb{R}^{m \times n}
$$

Matrix (Dot) Product

Matrix product $A B$ is the matrix such that

$$
(A B)_{i, j}=\sum_{k} A_{i, k} B_{k, j}
$$

(Goodfellow 2016)

This also defines matrix-vector products $A \boldsymbol{x}$ and $\boldsymbol{x}^{\top} A$.

Identity Matrix

The identity matrix for \mathbb{R}^{d} is the matrix I_{d} such that

$$
\forall \mathrm{x} \in \mathbb{R}^{d}, I_{d} \mathrm{x}=\mathrm{x}
$$

For example, I_{3} :

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Matrix Transpose

The transpose of a matrix A is the matrix A^{\top} such that $\left(A^{\top}\right)_{i, j}=A_{j, i}$.

$$
A=\left[\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2} \\
A_{3,1} & A_{3,2}
\end{array}\right] \Longrightarrow A^{\top}=\left[\begin{array}{lll}
A_{1,1} & A_{2,1} & A_{3,1} \\
A_{1,2} & A_{2,2} & A_{3,2}
\end{array}\right]
$$

The transpose of a matrix can be thought of as a mirror image across the main diagonal. The transpose switches the order of the matrix product.

$$
(A B)^{\top}=B^{\top} A^{\top}
$$

Systems of equations

The matrix equation

$$
A x=b
$$

expands to

$$
\begin{gathered}
A_{1,1} x_{1}+A_{1,2} x_{2}+\cdots A_{1, n} x_{n}=b_{1} \\
A_{2,1} x_{1}+A_{2,2} x_{2}+\cdots A_{2, n} x_{n}=b_{2} \\
\vdots \\
A_{m, 1} x_{1}+A_{m, 2} x_{2}+\cdots A_{m, n} x_{n}=b_{m}
\end{gathered}
$$

Solving Systems of Equations

A linear system of equations can have:

- No solution
- Many solutions
- Exactly one solution, i.e. multiplying by the matrix is an invertible function

Matrix Inversion

The matrix inverse of A is the matrix A^{-1} such that

$$
A^{-1} A=I_{d}
$$

Solving a linear system using an inverse:

$$
\begin{aligned}
A \mathbf{x} & =\boldsymbol{b} \\
A^{-1} A \mathbf{x} & =\boldsymbol{b} \\
I_{d} \mathrm{x} & =A^{-1} \boldsymbol{b}
\end{aligned}
$$

Can be numerically unstable to implement it this way in the computer, but useful for analysis.

Invertibility

Be careful, the matrix inverse does not always exist. For example, a matrix cannot be inverted if...

- More rows than columns
- More columns than rows
- Rows or columns can be written as linear combinations of other rows or columns ("linearly dependent")

Norms

- A norm is a function that measures how "large" a vector is
- Similar to a distance between zero and the point represented by the vector

$$
\begin{aligned}
& f(\mathbf{x})=0 \Longrightarrow \mathbf{x}=0 \\
& f(\mathbf{x}+\boldsymbol{y}) \leq f(\mathbf{x})+f(\boldsymbol{y}) \text { (the triangle inequality) } \\
& \forall a \in \mathbb{R}, f(a \mathbf{x})=|a| f(\mathbf{x})
\end{aligned}
$$

Norms

- L^{p} norm

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

- Most popular norm: L 2 norm, $p=2$, i.e., the Euclidean norm.
- L1 norm:

$$
\|\mathbf{x}\|_{1}=\sum_{i}\left|x_{i}\right|
$$

- Max norm, infinite norm:

$$
\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|
$$

Special Matrices and Vectors

- Unit vector:

$$
\|x\|_{2}=1
$$

- Symmetric matrix:

$$
A=A^{\top}
$$

- Orthogonal matrix

$$
\begin{aligned}
A^{\top} A & =A A^{\top}=I_{d} \\
A^{\top} & =A^{-1}
\end{aligned}
$$

Trace

- The trace of an $n \times n$ matrix is the sum of the diagonal

$$
\operatorname{Tr}(A)=\sum_{i} A_{i, i}
$$

- It satisfies some nice commutative properties

$$
\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)=\operatorname{Tr}(B C A)
$$

How to learn linear algebra

- Lots of practice problems.
- Start writing out things explicitly with summations and individual indexes.
- Eventually you will be able to mostly use matrix and vector product notation quickly and easily.

