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Unsupervised learning

Unsupervised learning is the study of learning without labels. What
can we do without labels?

How can we even define what learning means without labels?

In some sense, the ML community does not exactly agree on what it
means to do unsupervised learning, but intuitively, unsupervised
learning is the task of

▶ grouping (clustering)
▶ explaining
▶ finding structured data
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Motivating Examples

Some examples of situations where you’d use unupservised learning

1. You want to understand how a scientific field has changed over time.
You want to take a large database of papers and model how the
distribution of topics changes from year to year. But what are the
topics?

2. You’re a biologist studying animal behavior, so you want to infer a
high-level description of their behavior from video. You don’t know
the set of behaviors ahead of time.

3. You want to reduce your energy consumption, so you take a time
series of your energy consumption over time, and try to break it down
into separate components (refrigerator, washing machine, etc.).
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Two major unsupervised learning problems

Common themes: you have some data, and you want to infer some
structure underlying the data.

Clustering

Low-dimensional representation
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Clustering

Sometimes the data form clusters, where samples within a cluster are similar
to each other, and samples in different clusters are dissimilar:

Such a distribution is multimodal, since it has multiple modes, or regions of
high probability mass.
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Clustering

Grouping data points into clusters, with no observed labels, is called
clustering. E.g.

▶ Clustering machine learning papers based on topic (deep learning,
Bayesian models, reinforcement learning, etc.)

▶ But topics are never observed (unsupervised).

We will study the most popular clustering algorithm: K-means.
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Example of results from K-means

A simulated data set with 150 observations in two-dimensional space. Panels
show the results of applying K-means clustering with different values of K.

The color of each observation indicates the cluster to which it was assigned
using the K-means clustering algorithm.

There is no ordering of the clusters, so the cluster coloring is arbitrary.
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K-Means Clustering

K-means clustering is a simple approach for partitioning a data set into K
distinct, non-overlapping clusters.

Let C1, . . . ,CK denote sets that form a partition of {1, . . . , n}:

1. Each observation belongs to at least one of the K clusters.

2. No observation belongs to more than one cluster.

Ck ∩ Ck ′ = ∅, for all k ≠ k
′
.

Hence every single observation belongs to one and only one cluster. The
goal is to find such partition C1, . . . ,CK for certain purpose.
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K-Means Clustering

The idea behind K-means clustering is that a good clustering ensures
the within-cluster variation as small as possible.

The within-cluster variation for cluster Ck is a measure W (Ck) on the
difference among observations within a cluster.

We aim to find sets C1, . . . ,CK by solving

min
C1,...,CK

K

∑
k=1

W (Ck).

In words, we want to partition the observations into K clusters such
that the total within-cluster variation, summed over all K clusters, is
as small as possible.
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Definition of the within-cluster variation

It is common to use the Euclidean distance

W (Ck) =
1

∣Ck∣
∑

i ,i ′∈Ck

p

∑
j=1

(xij − xi ′j)2

=
1

∣Ck∣
∑

i ,i ′∈Ck

∥xi − xi ′∥2
2

where ∣Ck∣ denotes the number of observations in the kth cluster.

Let

x̄k =
1

∣Ck∣
∑
i∈Ck

xi .

Verify that

W (Ck) =
1

∣Ck∣
∑
i∈Ck

∥xi − x̄k∥2
2.
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Target of the K-means algorithm

Thus, K-means aims to solve

min
C1,...,CK

K

∑
k=1

W (Ck) = min
C1,...,CK

K

∑
k=1

1

∣Ck∣
∑
i∈Ck

∥xi − x̄k∥2
2.

This is, however, a very difficult problem to solve exactly. There are
almost K

n
ways to partition n observations into K clusters.
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A pratical alternating algorithm

High level overview of algorithm:

Initialization: randomly initialize cluster centers

The algorithm iteratively alternates between two steps:

▶ Assignment step: Assign each data point to the closest cluster
▶ Re-center step: Move each cluster center to the mean of the data

assigned to it

Assignments Refitted 
means 
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Figure from Bishop Animation of the algorithm: http://shabal.in/visuals/kmeans/5.html.
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K-means algorithm
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Why K-means Converges

K-means algorithm reduces the cost at each iteration.

min
C1,...,CK

K

∑
k=1

1

∣Ck∣
∑
i∈Ck

∥xi − x̄k∥2
2.

▶ Assignment step: fixing the centers, re-assignment will decrease the
total within-cluster variation.

▶ Re-centering step: fixing the assignments, re-centering the data within
clusters will reduce the total within-cluster variation.

Stopping criterion for convergence: when the assignments do not change in
the assignment step, we have converged (to at least a local minimum).
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Convergence of the K-means algorithm

Convergence will always happen after a finite number of iterations,
since the number of possible cluster assignments is finite

K-means cost function after each assignment step (blue) and refitting
step (red). The algorithm has converged after the third refitting step.
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Local Minima

The cost function is non-convex (so
convergence is not equivalent to the
global minimum)

There is nothing to prevent K-means
getting stuck at local minima.

Possible remedy: could try many random
starting points

A bad local optimum 
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K-means for Vector Quantization

Figure from Bishop

Given image, construct “dataset” of pixels represented by their RGB pixel
intensities

Run K-means, replace each pixel by its cluster center

Stat methods for ML (UofT) STA314-Lec12 18 / 35



K-means for Image Segmentation

Given image, construct “dataset” of pixels, represented by their HSV pixel
intensities

Run K-means to get superpixels
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Extensions

Non-exhaustive clustering. Allow some of the data points not to
belong to any cluster.

Overlapping clustering. Allow some of the data points to belong to
more than one clusters.

▶ Soft K-means

Clustering features rather than data points. Previously, we consider
the clustering for data points.
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PCA Overview

We now turn to the second unsupervised learning algorithm for this
course: principal component analysis (PCA)

PCA is used for dimensionality reduction: map data to a lower
dimensional space

PCA finds linear low-dimensional representations of the data by
preserving as much variation (in the original data) as possible.

PCA is useful for understanding lots of other algorithms.
▶ Autoencoders
▶ Matrix factorizations
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Low dimensional representation

In practice, even though data is very high dimensional, its important features
can be accurately captured in a low dimensional subspace.

Image credit: Elements of Statistical Learning

Find a low dimensional representation of your data.

▶ Computational benefits
▶ Interpretability, visualization
▶ Generalization
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Principal Components Analysis

PCA constructs linear combinations of features X1,X2, . . . ,Xp.

The first principal component(PC) is the linear combination of the
features

Z1 = u11X1 + u21X2 +⋯+ up1Xp

where the coefficients

u1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11
u21
⋮

up1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
are chosen such that

▶ Z1 has the largest variance;
▶ u1 is normalized such that ∑p

j=1 u
2
j1 = 1, i.e. ∥u1∥2 = 1.

We refer to the coefficients u1 as the loading of the first PC.
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More Principal Components

The second PC is again the linear combination of X1, . . . ,Xp

Z2 = u12X1 + u22X2 +⋯+ up2Xp

where the loading

u2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u12
u22
⋮

up2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
are chosen such that

▶ Z2 has the largest variance,
▶ ∥u2∥2 = 1,
▶ u

⊤
2 u1 = 0. This implies Z2 is uncorrelated with Z1.

This successively defines the first K PCs, Z1, . . . ,ZK , with
corresponding loadings u1, . . . ,uK .
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Computation

Suppose we have a data matrix X ∈ Rn×p
and we want to construct K

PCs with K ∈ {1, 2, . . . , p}.

1. Center X such that the columns have zero mean, that is,

X̃ = X − 1nX̄
⊤
.

2. Compute the first K loadings

UK = (u1, . . . ,uK )

from the centered data, X̃.

3. Obtain the first K PCs

Z̃ = X̃UK ∈ Rn×K
.

4. Add the centers back to the PCs

Z = Z̃ + 1nX̄
⊤

UK = (X̃ + 1nX̄
⊤)UK = XUK .
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Centering the data

u3
<latexit sha1_base64="BJtgPVIz0UB+7ENyLWvfoj6wESs=">AAAHYnic3VVNb9NAEJ220BTz1VBucDBElThFCUF8SAgVcoFL1BTSVmmqynY2qdW1Hdlr1Cjqv+AK/4s7P4S3Yzf1khg4dy17Z8dvZt6MZ73uRPqJajR+rqyu3bi5Xtm4Zd2+c/fe/c3qg/0kSmNP9LxIRvGh6yRC+qHoKV9JcTiJhRO4Uhy4Z239/uCriBM/Cr+o6UQcB8449Ee+5yio+gMlztUsvThpnWzWGvUGD3tRaOZCjfKxG1XXntCAhhSRRykFJCgkBVmSQwmuI2pSgybQHdMMuhiSz+8FXZAF2xQoAYQD7RmeY6yOcm2ItfaZsLWHKBJ3DEubtnPMEPKItdms49sFbFmMGfvWHKeY3dxnAK2iU2j/ZXeJ/F87nZMCw9eciw+eE9boLD0joxFmibUCf/2cAikgDWEVQ/Kgk9BmGh0jxpzVVWd+ynV2GCcgaU4WfyXte8A+HHhIwGMwZ+7imtEemGRcbMgZzgbDlGskuMqXFdMVLvrdK/VXRPn8hQTXJF7KoV/g8MlAl8ful/oxM3e4ThF31vIKdI0KmHizEonhu1vqq4gK+X3KTJbH7xTidwz036J3Sj0VUXpXBOgmvfvOl1i0C7HbBnYxtkXb9sPrdumskOtn3nEe7y75R9cl1zbzqz55y70heaVYcvD9x/lfO+uP93ONjcrE+b9OAG925jv2pf9QY/SZynfhlTd0Ep86b/R4OT9jFoX95/Vmq97qvqjtfMjPnw16RE/pGc6YV7RDH2mXemAR0jf6Tj/Wf1WsSrWylUFXV3KbLTJG5fFvcjVG7Q==</latexit>

Directions we compute will pass through origin, and should represent
the direction of the highest variation.

We need to center our data since we don’t want location of data to
influence calculation of the loadings. That is, we are not interested in
u3.
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Computation of the first loading

Let X ∈ Rn×p
be the centered data.

The first loading vector u1 is obtained via the optimization problem

u1 = arg max
u

1
n

n

∑
i=1

⎛
⎜
⎝

p

∑
j=1

ujxij
⎞
⎟
⎠

2

, subject to

p

∑
j=1

u
2
j = 1.

In the matrix notation,

u1 = arg max
u

1
nu

⊤
X

⊤
Xu, subject to u

⊤
u = 1.

The problem can be solved via the eigen decomposition of
Σ̂ ∶= X

⊤
X/n, a standard technique in linear algebra. More

specifically, u1 is nothing but the first eigenvector of Σ̂.
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Computation of the second loading

Let X ∈ Rn×p
be the centered data and u1 be the first loading.

The second loading vector u2 is obtained via the optimization problem

u2 = arg max
u

1
n

n

∑
i=1

⎛
⎜
⎝

p

∑
j=1

ujxij
⎞
⎟
⎠

2

, s.t.

p

∑
j=1

u
2
j = 1,

p

∑
j=1

ujuj1 = 0.

In the matrix notation,

u2 = arg max
u

1
nu

⊤
X

⊤
Xu, s.t. u

⊤
u = 1,u

⊤
u1 = 0.

u2 is simply the second eigenvector of Σ̂.

Similarly, u1, . . . ,uK are the first K eigenvectors of Σ̂.
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Another Interpretation of PCA

The first K loadings

U ∈ Rp×K

are obtained via

arg max
U

1
n tr (U

⊤
X

⊤
XU) , s.t. U

⊤
U = IK .

It can also be obtained by

arg min
U

1
n

n

∑
i=1

∥xi −UU
⊤

xi∥2
, s.t. U

⊤
U = IK .

PCA finds the subspace such that the projected data points in this
subspace are closest to the original data points.
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Some practical considerations

In general, in addition to centering, standardizing each variable to
have unit standard deviation is recommended.

Each principal component loading vector is unique, up to a sign flip.

How many PCs to retain?
▶ No simple answer to this question, as cross-validation is not available

for this purpose.

▶ There are several ad-hoc procedures.
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Applying PCA to faces

Consider running PCA on 2429 19x19 grayscale images (CBCL data)

Can get good reconstructions with only 3 components

PCA for pre-processing: can apply classifier to latent representation

▶ Original data is 361 dimensional
▶ For face recognition PCA with 3 components obtains 79% accuracy on

face/non-face discrimination on test data vs. 76.8% for a Gaussian
mixture model (GMM) with 84 states. (We’ll cover GMMs later in the
course.)

Can also be good for visualization
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Applying PCA to faces: Learned basis

Principal components of face images (“eigenfaces”)
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Applying PCA to digits
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Summary

Dimensionality reduction aims to find a low-dimensional
representation of the data.

PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction error.

The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.

PCA gives a set of decorrelated features (linear) in the original
features.
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