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Homework 4 is due tonight.

The last tutorial is on Dec 4th.

Please fill out the course evaluation form! Your feedbacks are
extremely helpful for future improvement of this course!
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Review on simple decision trees

Decision trees
▶ Regression tree
▶ Classification tree

Self-explanatory

Recursive binary splitting

Could be deeply grown trees, with large variance

Pruning
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Bootstrap

Bootstrap is a widely used resampling (of the available data)
approach!

It can be used to assess the uncertainty of basically any statistical
procedure.

▶ For instance, it can be used to estimate the standard errors of the
estimated coefficients of a linear model.

▶ Much more generally, it can even estimate the whole distribution of the
estimated coefficients of a linear model.

Its validity is backed up by a very general theory!
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A simple example

Suppose that we wish to invest 10K dollars in two financial assets
that yield returns of X and Y , respectively, where X and Y are
random quantities.

For any α ∈ [0, 1], we will invest a fraction α of our money in X , and
will invest the remaining (1 − α) in Y .

[αX + (1 − α)Y ] × 10,000

We wish to choose α to minimize the total risk, or variance, of our
investment, that is,

min
α∈[0,1]

Var(αX + (1 − α)Y ).
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Example

One can show that the value of α that minimizes the risk is given by

α =
σ

2
Y − σXY

σ2
X + σ

2
Y − 2σXY

,

where σ
2
Y = Var(Y ), σ

2
X = Var(X ) and σXY = Cov(X ,Y ).

If we have past observations (x1, y1), ..., (x100, y100), we can estimate
α by

α̂ =
σ̂

2
Y − σ̂XY

σ̂2
X + σ̂

2
Y − 2σ̂XY

.

How to estimate the variance of the estimator α̂?

Stat methods for ML (UofT) STA314-Lec11 6 / 36



An Oracle Approach

If we know the distribution of X and Y (usually unknown in reality), we
can estimate the variance of the estimator α̂ by the following strategy.

We simulate 100 paired observations of X and Y and compute

α̂ =
σ̂

2
Y − σ̂XY

σ̂2
X + σ̂

2
Y − 2σ̂XY

.

We repeat this procedure 1000 times, and get α̂1, . . . , α̂1000.

We estimate Var(α̂) by

1

1000 − 1

1000

∑
r=1

(α̂r − ᾱ)2
, where ᾱ =

1

1000

1000

∑
r=1

α̂r .

Q: Is this feasible in practice?
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Bootstrap

The bootstrap approach re-samples from the original data set to
mimic the process of obtaining new data sets in order to quantifty the
uncertainty of a given procedure.

Specifically, for a specified B (for instance, B = 1000) number of
repetitions, we repeatedly sample the same amount of observations
from the original data set with replacement.

As a result, data set from bootstrap might contain some observations
more than once, or zero time.
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Simple illustration of Bootstrap
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Bootstrap

Now let us apply bootstrap to estimate Var(α̂):

We denote the first bootstrap data set by Z
∗1

, and use Z
∗1

to
construct the estimate of α, denoted by α̂

∗1
.

This procedure is repeated B (say, B = 1000): specifically we

simulate B different bootstrap data sets, Z
∗1
, . . . ,Z

∗B
and B

corresponding estimates α̂
∗1
, . . . , α̂

∗B
.

We estimate Var(α̂) by the sample variance of α̂
∗1
, . . . , α̂

∗B
:

1

B − 1

B

∑
b=1

(α̂∗b − ᾱ∗)
2
, where ᾱ

∗
=

1

B

B

∑
b=1

α̂
∗b
.
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Example

Left: The histogram of estimates of α obtained by generating 1,000
simulated data sets from the true population.

Center: The histogram of estimates of α obtained from 1,000 bootstrap
samples from a single data set.

Right: Boxplots for estimates of α displayed in the left and center panels.
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Bootstrap for quantifying the uncertainty of the OLS
estimator

Given the data D = {(x1, y1), . . . , (xn, yn)}, the OLS gives

β̂ = (X⊤
X)−1

X
⊤
y.

Statistical property of β̂ ∈ Rp
consists of

its mean

its covariance
▶ Recall that analyses of β̂ such as its mean and covariance are only

available under linear model assumption.

its higher moments

its whole distribution

Bootstrap can be used to estimate all above!
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Bootstrap for quantifying the uncertainty of the OLS
estimator

Given the data D = {(x1, y1), . . . , (xn, yn)}, the OLS gives

β̂ = (X⊤
X)−1

X
⊤
y.

For b = 1, . . . ,B,

1. obtain the bootstrap sample D
b
= (Xb

, y
b)

2. compute β̂
b
= (Xb⊤

X
b)−1

X
b⊤

y
b
.

Now for β̂j , the bootstrap estimates β̂
1
j , . . . , β̂

B
j serve as “samples” of β̂j .
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Bootstrap for quantifying the uncertainty of the OLS
estimator

For instance,

the mean of β̂j can be estimated by

1

B

B

∑
b=1

β̂
b
j .

the variance of β̂j can be estimated by

1

B − 1

B

∑
b=1

(β̂b
j −

1

B

B

∑
b=1

β̂
b
j )

2

.

You can also estimate quantiles of the distribution of β̂j .

In fact, you can estimate the whole distribution of β̂j .

The tutorial on Dec 4th will demonstrate the usage of bootstrap in R.
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Bagging

Bootstrap aggregation, or bagging, is a general-purpose procedure
for reducing the variance of a statistical learning method;

We introduce it here because it is particularly useful and frequently
used in the context of decision trees.
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Why bagging? The idea of bagging.

Given a set of N independent estimates β̂
(1)
, . . . , β̂

(N)
of β, suppose

»»»»»»E[β̂
(i)] − β»»»»»» ≤ b, Var(β̂(i)) = σ2

, ∀i = 1, . . . ,N.

Then the averaged estimate

β̄ ∶=
1

N

N

∑
i=1

β̂
(i)

satsifying

∣E[β̄] − β∣ ≤ b, Var(β̄) = σ
2

N
.

In other words, averaging a set of independent random variables
reduces the variance, meanwhile does not incur extra bias.
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Bagging

To apply bagging to regression trees, if we had B independent
training sets, then we simply construct B regression trees using each
of the training set, and average the resulting predictions in the end.

However, we only have one training set. Instead, we sample with
replacement the same amount of data points from the training data
set B times. These sampled B data sets are called bootstrap
samples.

We train a decision tree by using the bth boostrap data and get the
prediction f̂

∗b(x) at a point x . We then average all the predictions
by bagging

f̂bag(x) =
1

B

B

∑
b=1

f̂
∗b(x).
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Bagging Trees

The fitted decision trees on boostrap data sets are grown deep, and
need not be pruned. Hence each individual tree has high variance, but
low bias. Averaging these trees reduces the variance.

Bagging can be also applied to classification trees. For a given test
observation, we can record the class predicted by each of the B trees,
and take a majority vote.
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Out-of-Bag Error Estimation

There is a simple way to estimate the test error of a bagged model,
without the need to perform cross-validation or the validation set
approach.

For each bootstrap data set,
▶ It only contains, on average, around 2/3 of the original observations.

▶ The remaining 1/3 is not used to fit the decision tree, and is referred
to as the out-of-bag (OOB) observations.

▶ We predict the OOB observations by using the fitted decision tree.
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Out-of-Bag Error Estimation

For each observation i , we can pool its predictions across all B
bootstrap data sets where i belongs to the OOB observations.

▶ For regression, we average
▶ For classification, we vote by majority

We compute the MSE / misclassification error between predictions
and the true responses over all observations.
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Variable Importance Measures

Bagging typically reduces variance (i.e. improve accuracy) over
prediction using a single decision tree.

However, it can be difficult to interpret the resulting model.

One can obtain an overall summary of the importance of each
predictor using the RSS (for bagging regression trees) or the Gini
index (for bagging classification trees).
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Variable Importance Measures

In the case of bagging regression trees, we can record the total
amount that the RSS is decreased due to splits over a given predictor,
averaged over all B trees.
In bagging classification trees, we replace RSS by the Gini index.

A large value of decreased RSS (or Gini index) indicates an important
predictor.

A graphical representation of variable importance is easy to draw.
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Heart Data

Variable importance is computed using the mean decrease in Gini index,
and expressed relative to the maximum.
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Summary on bagging

Bagging simply averages multiple decision trees

Bias does not increase

Variance is reduced
▶ How much is variance reduced?
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Random Forests

Bagging is affected by the correlation among decision trees!

Random forests provide an improvement over bagged trees by
decorrelateing the trees.
This reduces the variance when we average the trees.
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Random Forests

As in bagging, we build a number of decision trees on bootstrap
training samples.

But for building these decision trees, when each time a split in a tree
is considered, a random selection of m < p predictors is chosen as
split candidates from the full set of p predictors.

A fresh selection of m predictors is taken at each split, and a common
choice of m is m ≈

√
p.

Random forest with m = p is just bagging!
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Why does Random Forest Reduce Correlations?

Suppose that there is one very strong predictor in the data set, along
with a number of other moderately strong predictors.

Among all single decision trees, most of them will use this strong
predictor in the top split. All of the single trees will look quite similar
and could have high correlation.

Random forests reduce the correlation by randomly selecting a subset
of the predictors in each split of buiding each single tree. Indeed, on
average many splits will not even consider the strong predictor.
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Heart Data

The test error (black and orange) is shown as a function of B, the number of bootstrapped

training sets. Random forests were applied with m =
√
p. The dashed line indicates the test

error resulting from a single classification tree. The green and blue traces show the OOB error,

which is considerably lower.
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Gene Expression Data

We applied random forests to a high-dimensional biological data set
consisting of expression measurements of 4,718 genes measured on
tissue samples from 349 patients.

There are around 20,000 genes in humans, and individual genes have
different levels of activity, or expression, in particular cells, tissues,
and biological conditions.

Each of the patient samples has a qualitative label with 15 different
levels: either normal or one of 14 different types of cancer.

We use random forests to predict cancer type based on the 500 genes
that have the largest variance in the training set.

We randomly divided the observations into a training and a test set,
and applied random forests to the training set for three different
values of the number of splitting variables m.
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Gene Expression Data

The test errors are displayed as functions of the number of trees (B).
Random forests (m < p) lead to a slight improvement over bagging (m = p).

A single classification tree has an error rate of 45.7%.
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Boosting

Like bagging, boosting is a general approach that can be applied to
many statistical learning methods for regression and classification.
We focus on the context of decision trees.

Recall that bagging (and random forest) involves creating multiple
copies of the original training data set using bootstrap, fitting a
separate decision tree to each copy, and then combining all of the
trees in order to create a single predictive model.

Boosting works both similarly and also differently

a Boosting combines different fitted trees

b the trees in boosting are grown sequentially: each tree is grown using
information from previously grown trees

b Boosting does not involve bootstrap sampling; instead each tree is
fitted on a modified version of the original data set.
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Boosting
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Boosting

Unlike fitting a single large decision tree to the data, which might
lead to overfitting, the boosting approach instead learns slowly.

Given the current model, we fit a decision tree to the residuals from
the model. We then add this new decision tree into the fitted
function and update the residuals.

Each of these trees can be rather small, with just a few terminal
nodes, determined by the parameter d in the algorithm.

By fitting small trees to the residuals, we slowly improve f̂ in areas
where it does not perform well. The step size λ further slows down
the learning process.
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Tuning parameters for Boosting

The number of trees B. Unlike bagging and random forests, boosting
can overfit if B is too large, although this overfitting tends to occur
slowly if at all. We use cross-validation to select B.

The shrinkage parameter (step size) λ, a small positive number. This
controls the rate at which boosting learns. Typical values are 0.01 or
0.001.

The number of splits d in each tree, which controls the complexity of
the boosted ensemble. Often d = 1 works well, in which case each
tree is a stump, consisting of a single split and resulting in an
additive model.
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Gene Expression Data

For both boosting trees, λ = 0.01. Depth-1 trees slightly outperform depth-2

trees and random forests. But these differeces are within their standard errors.
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Summary

Decision trees are simple and interpretable models for regression and
classification.

However their prediction accuracy is often not competitive with other
regression / classification methods.

Bagging, random forests and boosting can improve prediction
accuracy of trees. They work by growing many trees on the training
data and then combining the predictions of the resulting trees.

The latter two methods – random forests and boosting – are among
the state-of-the-art methods for supervised learning. However their
results can be difficult to interpret.
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