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Review

In the last lecture, we have learned the logistic regression for binary
classification with Y ∈ {0, 1}.

Estimating the Bayes rule at any observation x ∈ Rp
is equivalent to

estimate the conditional probability P(Y = 1 ∣ X = x).
Logistic regression parametrizes the conditional probability by

P(Y = 1 ∣ X = x) = e
β0+x

⊤
β

1 + eβ0+x
⊤β
.

We estimate the coefficients by using MLE which can be solved by
(stochastic) gradient descent.
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Extension to multi-class classification

When Y ∈ {0, 1, . . . ,K} for K ≥ 2, we need to estimate

pk(x) ∶= P(Y = k ∣ X = x), ∀1 ≤ k ≤ K .

We assume

p0(x) =
1

1 +∑K
k=1 e

β
(k)
0 +x⊤β(k)

,

p1(x) =
e
β
(1)
0 +x⊤β(1)

1 +∑K
k=1 e

β
(k)
0 +x⊤β(k)

.

⋮

pK (x) = e
β
(K)
0 +x⊤β(K)

1 +∑K
k=1 e

β
(k)
0 +x⊤β(k)

Choice of the baseline is arbitrary.
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Classification

Equivalently,

log (p1(x)
p0(x)

) = β(1)
0 + β

(1)
1 x1 +⋯+ β

(1)
p xp

log (p2(x)
p0(x)

) = β(2)
0 + β

(2)
1 x1 +⋯+ β

(2)
p xp

⋮

log (pK (x)
p0(x)

) = β(K)
0 + β

(K)
1 x1 +⋯+ β

(K)
p xp

So classification can be done immediately once β
(k)

’s are estimated,
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How to estimate coefficients?

A naive approach: separate binary logistic regressions

log (pk(x)
p0(x)

) = β(k)
0 + β

(k)
1 x1 +⋯+ β

(k)
p xp

Split the data into {Dtrain
(1), . . . ,D

train
(K)} with Dtrain

(k) containing all
data with y ∈ {0, k}.

1. For each 1 ≤ k ≤ K , use Dtrain
(k) to perform binary logistic regression

to estimate β
(k)

and estimate

pk(x)
p0(x)

2. Assign class label by comparing

1,
p1(x)
p0(x)

,
p2(x)
p0(x)

. . . ,
pK (x)
p0(x)
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Why naive?

Estimation of β
(k)

▶ only uses Dtrain
(k), data points in class {0, k}

▶ ignore all data points in other classes

The label 1{yi = k} is dependent on all other 1{yi = k
′} for k

′
≠ k .

Intuitively, this dependence can aid estimation of β
(k)

by using data
from all classes.

What should we use instead?
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MLE for multi-class logistic regression

For (y1, x1), . . . , (yn, xn), the log-likelihood of (β(1)
, . . . ,β

(K)) with no
intercepts is proportional to

n

∑
i=1

log (
K

∏
k=0

pk(xi)1{yi=k})

=

n

∑
i=1

K

∑
k=0

1{yi = k} log (pk(xi))

=

n

∑
i=1

[1{yi = 0} log (p0(xi)) +
K

∑
k=1

1{yi = k} log (pk(xi))]

=

n

∑
i=1

[
K

∑
k=1

1{yi = k} x
⊤
i β

(k)
−

K

∑
k=0

1{yi = k} log (1 +
K

∑
k=1

e
x
⊤
i β

(k)
)]

=

n

∑
i=1

[
K

∑
k=1

1{yi = k} x
⊤
i β

(k)
− log (1 +

K

∑
k=1

e
x
⊤
i β

(k)
)]
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Gradient of `(β(k))
For any 1 ≤ k ≤ K ,

∂`(β(1)
, . . . ,β

(K))
∂β(k) =

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1{yi = k} xi −

xie
x
⊤
i β

(k)

1 +∑K
k=1 e

x⊤i β
(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1{yi = k} − e

x
⊤
i β

(k)

1 +∑K
k=1 e

x⊤i β
(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi

c.f. the binary case

∂`(β)
∂β

=

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1{yi = 1} − e

x
⊤
i β

1 + ex
⊤
i β

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi

=

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
yi −

e
x
⊤
i β

1 + ex
⊤
i β

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi .
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Gradient descent

Therefore, for 1 ≤ k ≤ K , we update

β̂
(k)
(t+1) = β̂

(k)
(t) + α

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1{yi = k} − e

x
⊤
i β̂

(k)
(t)

1 +∑K
k=1 e

x⊤i β̂
(k)
(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
xi .

Remark:

the gradient update uses data points from all classes!

better estimation than the naive approach
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An alternative to Logistic Regression

When the classes are well-separated, the parameter estimates for the
logistic regression model are surprisingly unstable

1
.

▶ Discriminant analysis does not suffer from this problem.

When n is small and we know more about the data, such as the
distribution of X ∣ Y = k

▶ Discriminant analysis has better performance than the logistic
regression model.

Logistic Regression sometimes does not handle multi-class
classification well

▶ Discriminant analysis is more suitable for multi-class classification
problems.

1
A paper on this.
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Discriminant Analysis

Logistic regression directly parametrizes

P(Y = k ∣ X = x), ∀k ∈ C .

By contrast, Discriminant Analysis parametrizes the distribution of

X ∣ Y = k , ∀k ∈ C .

Normal distributions are oftentimes used.
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Discriminant Analysis

What does parametrizing X ∣ Y = k buy us?

By Bayes’ theorem,

P(Y = k ∣ X = x) = P(X = x ∣ Y = k)P(Y = k)
P(X = x) .

Thus, to compare two classes k ≠ k
′
∈ C ,

P(Y = k ∣ X = x) ≥ P(Y = k
′ ∣ X = x)

⟺ P(X = x ∣ Y = k)P(Y = k) ≥ P(X = x ∣ Y = k
′)P(Y = k

′)
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Notation for discriminant analysis

Suppose we have K classes, C = {0, 1, 2, . . . ,K − 1}. For any k ∈ C ,

We write
πk ∶= P(Y = k)

as the prior probability that a randomly chosen observation comes
from the kth class.

Write
fk(X ) ∶= P(X = x ∣ Y = k)

as the conditional density function of X = x from class k.

In discriminant analysis, parametric assumption is assumed on fk(X ).
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The Bayes rule

By the Bayes’ theorem,

pk(x) ∶= P(Y = k ∣ X = x) = πk fk(x)
∑`∈C π`f`(x)

is called the posterior probability, i.e. the probability that an
observation belongs to the kth class given its feature.

According to the Bayes classifier, we should classify a new point x
according to

arg max
k∈C

pk(x) = arg max
k∈C

πk fk(x)
∑K
`∈C π`f`(x)

= arg max
k∈C

πk fk(x).
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Discriminant Analysis for p = 1

Assume that

X ∣ Y = k ∼ N(µk , σ2
k), ∀k ∈ C ,

namely,

fk(x) =
1√

2πσk
e
− 1

2σ2
k

(x−µk)2

.

Linear Discriminant Analysis (LDA) further assumes

σ
2
0 = σ

2
1 =⋯ = σ

2
K−1 = σ

2
.
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Linear Discriminant Analysis for p = 1

As a result,

pk(x) =
πk fk(x)

∑K
`∈C π`f`(x)

=
πke

− 1

2σ2 (x−µk)
2

∑`∈C π`e
− 1

2σ2 (x−µ`)2
.

The Bayes rule classifies X = x to

arg max
k∈C

pk(x) = arg max
k∈C

log (pk(x))

= arg max
k∈C

µk

σ2
x −

µ
2
k

2σ2
+ log πk

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
δk(x)

(verify!)

The name LDA is due to the fact that the discriminant function
δk(x) is a linear function in x .
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Linear Discriminant Analysis for p = 1

For binary case, i.e. K = 2,

arg max
k∈{0,1}

pk(x) = arg max
k∈{0,1}

[µk
σ2

x −
µ

2
k

2σ2
+ log πk]

If the priors are equal π0 = π1 and suppose µ1 ≥ µ0, then the Bayes
classifier assigns X = x to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if x < µ0+µ1

2

1 if x ≥ µ0+µ1

2

The line x = (µ0 + µ1)/2 is called the Bayes decision boundary.
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Example of LDA in binary classification

Consider µ0 = −1.5, µ1 = 1.5, and σ = 1. The curves are p0(x) (green)
and p1(x) (red). The dashed vertical lines are the Bayes decision boundary.

f
∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if x < µ0+µ1

2
= 0

1 if x ≥ µ0+µ1

2
= 0
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Compute the Bayes classifier

If we know µ0, . . . , µK−1, σ
2

and π0, . . . , πK−1, then we can construct
the Bayes rule

arg max
k∈C

δk(x) = arg max
k∈C

{µk
σ2

x −
µ

2
k

2σ2
+ log πk} .

However, we typically don’t know these parameters. We need to use
the training data to estimate them!
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Estimation under LDA

Given training data (x1, y1), . . . , (xn, yn), for all k ∈ C ,

We have

nk =
n

∑
i=1

1{yi = k}.

We estimate πk by

π̂k =
nk
n .

We estimate µk and σ
2

by

µ̂k =
1
nk

∑
i∶yi=k

xi

σ̂
2
=

1

n − K

K

∑
k=1

∑
i∶yi=k

(xi − ûk)2
.

These are actually the MLEs.
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The LDA classifier

We estimate δk(x) by the plug-in estimator

δ̂k(x) =
µ̂k

σ̂2
x −

µ̂
2
k

2σ̂2
+ log π̂k .

The LDA classifier assigns x to

arg max
k∈C

δ̂k(x).

How about the case when p > 1?
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Linear Discriminant Analysis for p > 1

Recall that the posterior probability has the form

P(Y = k ∣ X = x) = πk fk(x)
∑`∈C π`f`(x)

,

Now, we assume

X ∣ Y = k ∼ Np(µk ,Σ), ∀k ∈ C ,

that is,

fk(x) =
1

(2π)p/2∣Σ∣1/2
e
− 1

2
(x−µk)T Σ

−1(x−µk).
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The discriminant function becomes

δk(x) = x
T

Σ
−1
µk −

1

2
µ
T
k Σ

−1
µk + log πk

c.f. the univariate case

δk(x) =
µk

σ2
x −

µ
2
k

2σ2
+ log πk .

The Bayes decision boundaries are the set of x for which

δk(x) = δ`(x), ∀k ≠ `,

which are again linear hyperplanes in x .
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Example

There are three classes (orange, green and blue) with two features X1 and
X2. Dashed lines are the Bayes decision boundaries. Solid lines are their
estimates based on the LDA. 2
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Estimation under LDA for p > 1

Given the training data (x1, y1), . . . , (xn, yn), for any k ∈ C ,

We have

nk =
n

∑
i=1

1{yi = k}.

We estimate πk by

π̂k =
nk
n .

The slight difference is to estimate µk and Σ by

µ̂k =
1
nk

∑
i∶yi=k

xi

Σ̂ =
1

n − K

K

∑
k=1

∑
i∶yi=k

(xi − ûk)(xi − ûk)⊤.
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A plugin rule for estimating discriminant functions

We use the plugin estimator

δ̂k(x) = x
⊤

Σ̂
−1
µ̂k −

1

2
µ̂
⊤
k Σ̂

−1
µ̂k + log π̂k , ∀k ∈ C .

The resulting LDA classifier is

arg max
k∈C

δ̂k(x).
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Logistic Regression v.s. LDA: similarity

For binary classification of LDA , one can show that

log ( p1(x)
1 − p1(x)

) = log (p1(x)
p0(x)

)

= c0 + c1x1 +⋯+ cpxp,

also a linear form as logistic regression.
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Logistic Regression v.s. LDA: differences

1. LDA makes more assumption by specifying X ∣ Y .

2. The parameters are estimated differently.
▶ Logistic regression uses the conditional likelihood based on P(Y ∣X )

(known as discriminative learning).

▶ LDA uses the full likelihood based on P(X ,Y ) (known as generative
learning).

3. If classes are well-separated, then logistic regression is not advocated.
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Other forms of Discriminant Analysis

LDA specifies
X ∣ Y = k ∼ N(µk ,Σ), ∀k ∈ C .

Other discriminant analyses change the specifications for X ∣ Y = k.

Quadratic discriminant analysis (QDA) assumes

X ∣ Y = k ∼ N(µk ,Σk), ∀k ∈ C ,

by allowing different Σk across all classes.

Naive Bayes assumes

X1, . . . ,Xp are independent given Y = k .

For Gaussian density, this means that Σk ’s are diagonal.

Many other forms: different density models for X ∣ Y = k , including
non-parametric approaches.
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Quadratic Discriminant Analysis: p = 1

Assume that

X ∣ Y = k ∼ N(µk , σ2
k), ∀k ∈ C ,

namely,

fk(x) =
1√

2πσk
e
− 1

2σ2
k

(x−µk)2

.

As a result,

pk(x) =
πk fk(x)

∑K
`∈C π`f`(x)

=

πk
σk
e
− 1

2σ2
k

(x−µk)2

∑`∈C
π`
σ`
e
− 1

2σ2
`

(x−µ`)2
.
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Decision boundary of QDA

The Bayes rule classifies X = x to

arg max
k∈C

pk(x) = arg max
k∈C

log (pk(x))

= arg max
k∈C

log [πkσk e
− 1

2σ2
k

(x−µk)2

]

= arg max
k∈C

−
x

2

2σ2
k

+
µk

σ2
k

x −
µ

2
k

2σ2
k

+ log πk − log(σk)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

δk(x)

The name QDA is due to the fact that δk(x) is quadratic in x .
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Quadratic Discriminant Analysis: p ≥ 1

X ∣ Y = k ∼ Np(µk ,Σk)
The discriminant function becomes

δk(x) = log [ πk

∣Σk∣1/2
e
− 1

2
(x−µk)⊤Σk

−1(x−µk)]

= x
T

Σ
−1
k µk −

1

2
µ
T
k Σ

−1
k µk + log πk −

1

2
x
T

Σ
−1
k x −

1

2
log ∣Σk∣.

The decision boundary between any class k and class `

{x ∈ Rp
∶ δk(x) = δ`(x)}

is also quadratic in x
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Decision boundaries of LDA and QDA

Decision boundaries of the Bayes classifier (purple dashed), LDA (black
dotted), and QDA (green solid) in two scenarios.
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Estimation of QDA

Given training data (x1, y1), . . . , (xn, yn), for any k ∈ C ,

We have

nk =
n

∑
i=1

1{yi = k}.

We estimate πk by

π̂k =
nk
n .

We estimate µk and Σ by

µ̂k =
1
nk

∑
i∶yi=k

xi

Σ̂k =
1

nk − 1
∑

i∶yi=k

(xi − ûk)(xi − ûk)⊤.

Plugin estimator for δ(x).
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Potential problems for LDA and QDA in high dimension

LDA: we have

(K − 1) + pK +
p(p + 1)

2

number of parameters to estimate.

QDA: we have

(K − 1) + pK +
p(p + 1)

2
K

number of parameters to estimate.

The estimation error is large when p is large comparing to n.
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Naive Bayes

Naive Bayes assumes that features are independent within each class, but
not necessarily Gaussian.

Useful when p is large, whence QDA and even LDA break down.

Under Gaussian distributions, naive Bayes assumes

Σk = diag(σ2
k1, . . . , σ

2
kp), ∀k ∈ C .

The discriminant function is

δk(x) = −
1

2

p

∑
j=1

(xj − µkj)2

σ2
kj

+ log πk −
1

2

p

∑
j=1

log σ
2
kj .

It is easy to deal with both quantitative and categorical features.

Despite the strong independence assumption within class, naive Bayes
often produces good classification results.
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