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Review

In the last lecture, we have learned the logistic regression for binary
classification with Y € {0,1}.

o Estimating the Bayes rule at any observation x € R” is equivalent to
estimate the conditional probability P(Y =1 | X = x).
@ Logistic regression parametrizes the conditional probability by
Bo+x' B
e
P(Y=1[X=x)=————.
1+ ebotx' B

@ We estimate the coefficients by using MLE which can be solved by
(stochastic) gradient descent.
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Extension to multi-class classification

When Y € {0,1,...,K} for K = 2, we need to estimate

p(x):=P(Y =k | X =x), Vi<k=<K.

We assume
1
po(x) = ;
14 YK e T
5(1)+X ﬁ(l)
X) = .
P1(x) Ly A T B
eﬁ(()K)+XTﬁ(K)
X) =
pK( ) 1 + lele B( )+XTﬁ(k)

Choice of the baseline is arbitrary.
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Classification

Equivalently,
(8] AP Ao
(B o A
IOg(PK(X)) 00 L g0 4 et B
po(x)

So classification can be done immediately once ,B(k)'s are estimated,
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How to estimate coefficients?

A naive approach: separate binary logistic regressions

pi(x) (k) O
'og (,,( )) th * %

Split the data into {Dtrai"(l), e ,Dtrai"(K)} with Dtrai"(k) containing all
data with y € {0, k}.

1. Foreach 1< k < K, use Dtrai"(k) to perform binary logistic regression
to estimate ,B(k) and estimate

pi(x)
po(x)

2. Assign class label by comparing

p1(x) pa(x) pk (x)
’ PO(X)’ po(x) Y po(x)
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@ Estimation of ,B(k)

> only uses Dtrai"(k), data points in class {0, k}
> ignore all data points in other classes

o The label 1{y; = k} is dependent on all other 1{y; = k'} for k' # k.

Intuitively, this dependence can aid estimation of B(k) by using data
from all classes.

@ What should we use instead?
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MLE for multi-class logistic regression

For (y1,%x1),...,(¥n, X,), the log-likelihood of (ﬁ(l), . ,,B(K)) with no
intercepts is proportional to

Zlog(]_[p (x) “)
i=1

K
Z 1{y; = k} log (pi(x;))

M= LM=

i K
= > | 1{yi = 0} log (po(x1)) + ) 1{y; = k}log (Pk(xi)):|
i=1L k=1
n [ K K K+
=Y 1Y 1y =kp %/ g% 21{y,=k}|og<1+zexfﬁ ﬂ
i=1 Lk=1 k=0 k=1
n [ K K )
:Z Z {y; = k} x; ,8( Iog(1+2ex’ﬂ ):|
i=1 k=1 k=1
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Gradient of E(B(k))

Forany 1< k<K,

(1) (K) n [ x; 8%
1 ,
oY, ) gy e }

85(k) el | 1+ Zf:l ex’.T,@(k)

n [ ex,-Tﬁ(k)
=) | Hyi=k}- X;
; ’ 1+ YK e8|

- T
oH(B) & e P
PR S gy =1y - —— | x,
B ,Zl i 1+e%B
n [ ex,T,B
= yi— ——— | x;.
,-Zl i 1|
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Gradient descent

Therefore, for 1 < k < K, we update

n XTﬁEk))

A(K) (k) e P

Bierny =By +a) | Uyi=k} - el R
i=1 1+ Y, P

Remark:

@ the gradient update uses data points from all classes!

@ better estimation than the naive approach
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An alternative to Logistic Regression

@ When the classes are well-separated, the parameter estimates for the
logistic regression model are surprisingly unstable®.

» Discriminant analysis does not suffer from this problem.

@ When n is small and we know more about the data, such as the
distribution of X | Y = k
» Discriminant analysis has better performance than the logistic
regression model.

@ Logistic Regression sometimes does not handle multi-class
classification well
» Discriminant analysis is more suitable for multi-class classification
problems.

1 .
A paper on this.
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https://statisticalhorizons.com/wp-content/uploads/Allison.StatComp.pdf

Discriminant Analysis

o Logistic regression directly parametrizes

P(Y=k|X=x), VYkecC.

@ By contrast, Discriminant Analysis parametrizes the distribution of
XY =k, VkeC.

Normal distributions are oftentimes used.
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Discriminant Analysis

What does parametrizing X | Y = k buy us?

o By Bayes' theorem,

P(X = x| Y = K)P(Y = k)

P(Y =k|X=x)= X =

Thus, to compare two classes k # k' e C,

P(Y=k|X=x) 2 P(Y=K|X=x)
= PX=x|Y=KP(Y=k) 2 P(X=x]|Y=k)P(Y =k)
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Notation for discriminant analysis

Suppose we have K classes, C = {0,1,2,...,K —1}. Forany k € C,

o We write
i i=P(Y = k)
as the prior probability that a randomly chosen observation comes

from the kth class.

o Write
[ (X):=P(X=x|Y =k)

as the conditional density function of X = x from class k.

@ In discriminant analysis, parametric assumption is assumed on f,(X).
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The Bayes rule

@ By the Bayes' theorem,

x) = Ty fi(x)
Zzecmff(x)

is called the posterior probability, i.e. the probability that an
observation belongs to the kth class given its feature.

pr(x) :=P(Y =k [ X =

@ According to the Bayes classifier, we should classify a new point x
according to

f
arg max pr(x) = arg max L(X) = argmax Tif(x).
€ chm’ff(x) €
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Discriminant Analysis for p = 1

@ Assume that
X|Y=k~N(uop), VkeC,

namely,
Sl (Y2
1 2gi(X i)

e
V2mwoy

fi(x) =

e Linear Discriminant Analysis (LDA) further assumes

2 2 _ _
0Og =01 =+ =0K-1=0 .
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Linear Discriminant Analysis for p =1

@ As a result,

1

T f( -3 2(X_Hk)2
kfi(x)  me 2

pr(x) =

K - I EERY
decﬂ-efé(x) ZZGCWZe 2Uz(X te)

@ The Bayes rule classifies X = x to

= |
argmax py(x) = argmax log (p«(x))

2

_ Kk Kk .

= arg max ;X by + log Wk, (verify!)
5kEX)

The name LDA is due to the fact that the discriminant function
0k (x) is a linear function in x.
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Linear Discriminant Analysis for p =1

For binary case, i.e. K =2,

2
arg max px(x) = arg max Py - Fi o log )
ke{0.1} ke{o1} | 02" 202

@ If the priors are equal my = w1 and suppose 1 = g, then the Bayes
classifier assigns X = x to

0 if x < fotin
2

1 if x > Kot
= 2

The line x = (g + p1)/2 is called the Bayes decision boundary.
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Example of LDA in binary classification

Consider p9 = —1.5, 3 = 1.5, and o = 1. The curves are py(x) (green)
and p;(x) (red). The dashed vertical lines are the Bayes decision boundary.
0 ifx <3 =0
*
fr(x) =

1 if x> &t -
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Compute the Bayes classifier

o If we know g, ..., fiKk-1, o2 and o, ..., TK_1, then we can construct
the Bayes rule
KB N2
—gx - —k2 + log 7y ¢ .
20

arg max d,(x) = arg max
g max k(x) gmax -

C

@ However, we typically don't know these parameters. We need to use
the training data to estimate them!
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Estimation under LDA

Given training data (xq,y1),..., (X, yn), forall k € C,

@ We have
n

N = Zl{}/i = k}.
i=1
@ We estimate 7, by

A Nk
Th=—-
. 2
o We estimate u and o~ by
. 1
Pk = e Xi
ityi=k
K
5= 2 YO (- i)
n— K . i k
k=1iy;=k
These are actually the MLEs.
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The LDA classifier

@ We estimate d,(x) by the plug-in estimator
N iz
ko4 log 7.

Sk(x) = ~D 26’2

argmax 0y (x).

@ The LDA classifier assigns x to
keC

@ How about the case when p > 17
21/ 36
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Linear Discriminant Analysis for p > 1

@ Recall that the posterior probability has the form

T fr(x)

P(Y=k|X=x)= —ZZECW’%(X),

@ Now, we assume
X|Y=k~ Np(,uk,Z), YkeC,
that is,

1 ~ 0= TE 7 (=)
X)=——F——-¢€ 2 .
W) = e i
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@ The discriminant function becomes

Te-1 1 7o-1
Ok(x) =X T "pue = i X pue + log

c.f. the univariate case

O(x) = &x - ﬁ + log .
o2 202

@ The Bayes decision boundaries are the set of x for which
O(x) =0d4(x), Vk=#¢,

which are again linear hyperplanes in x.
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Example

There are three classes (orange, green and blue) with two features X; and

X,. Dashed lines are the Bayes decision boundaries. Solid lines are their
estimates based on the LDA. 2
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Estimation under LDA for p > 1

Given the training data (x1,y1),...,(X,,y,), for any k € C,

o We have N
N = Zl{}/i = k}.
i=1
@ We estimate 7y by
A Nk
Tk = -

The slight difference is to estimate uy and X by

N 1
Pk = e Xi
ityi=k
K

A~ ANT
(x; = dg ) (xj = di) .

k=1 y:
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A plugin rule for estimating discriminant functions

@ We use the plugin estimator

. . 1
Si(x) =x' £y - ik E g +log 7y, Vke C.

@ The resulting LDA classifier is

81 (x).
arg max d,(x)
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Logistic Regression v.s. LDA: similarity

For binary classification of LDA , one can show that

pi(x) \ _ p1(x)
og (7 pl(x>) ) Iog<Po(X))
o+ Cixp+ o0+ CpXp,

also a linear form as logistic regression.
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Logistic Regression v.s. LDA: differences

1. LDA makes more assumption by specifying X | Y.

2. The parameters are estimated differently.

» Logistic regression uses the conditional likelihood based on P(Y|X)
(known as discriminative learning).

» LDA uses the full likelihood based on P(X, Y) (known as generative
learning).

3. If classes are well-separated, then logistic regression is not advocated.
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Other forms of Discriminant Analysis

LDA specifies
XY =k~N(ug,X), VkeC.

Other discriminant analyses change the specifications for X | Y = k.
e Quadratic discriminant analysis (QDA) assumes
X|Y=k~N(ug,Xy), VkeC,
by allowing different ¥, across all classes.
o Naive Bayes assumes
Xi,..., X, are independent given Y = k.

For Gaussian density, this means that ¥,'s are diagonal.

@ Many other forms: different density models for X | Y = k, including
non-parametric approaches.
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Quadratic Discriminant Analysis: p =1

@ Assume that

X|Y=k~NQ,or), VkeC,

namely,
1 =l
fi(x) = e >k
V2moy
@ As a result,
1
== (x=p)
Tk 202
mh(x) g€ "

pk(X) = K
Zeecwfe(x) Zéec Teo 207

o¢
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Decision boundary of QDA

The Bayes rule classifies X = x to

= |
argmax py(x) = argmax log (px(x))

1 2
| 7Tk _ZUi(X_Mk)
= arg max 1o,
g keC &

2
X
=argmax —— + ’u—gx - & + log m — log(oy)
keC 20y o} 2ak
3k(x)

The name QDA is due to the fact that d§,(x) is quadratic in x.
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Quadratic Discriminant Analysis: p = 1

XY =k~ Np(pue, Zi)

The discriminant function becomes

L) TS T (=)
Ox(x) = Iog[ e 2
|2 |12

Te-1 1 7.1 1 711 1
=X T e = St T phie +log T = 5X Xy x = 5 log [T

The decision boundary between any class k and class ¢
{x € R” : 54 (x) = 6,(x)}

is also quadratic in x
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Decision boundaries of LDA and QDA

Decision boundaries of the Bayes classifier (purple dashed), LDA (black
dotted), and QDA (green solid) in two scenarios.
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Estimation of QDA

Given training data (xq,y1),..., (Xn, ¥,), for any k € C,

@ We have .

ny = Zl{YI = k}.

i=1

o We estimate 7y by

. 1 . T
k=TT .Zk(xi — 0 )(xj — dk) -
1yi=

@ Plugin estimator for 6(x).
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Potential problems for LDA and QDA in high dimension

o LDA: we have

+1
(K=1)+pK + %
number of parameters to estimate.
o QDA: we have
+1
(K =1) + pK + %K

number of parameters to estimate.

@ The estimation error is large when p is large comparing to n.
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Naive Bayes assumes that features are independent within each class, but
not necessarily Gaussian.

@ Useful when p is large, whence QDA and even LDA break down.
@ Under Gaussian distributions, naive Bayes assumes

Y, = diag(ofy, ..., 00p), VkeC.
The discriminant function is
1 L ij

5k(X) = —§ +|Og7’[‘k—
kJ

Mln—\

P
Z log O'kj
j=1

@ It is easy to deal with both quantitative and categorical features.

@ Despite the strong independence assumption within class, naive Bayes
often produces good classification results.
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