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Review

In classification, X ∈ Rp
and Y ∈ C = {0, 1, . . . ,K − 1}.

The Bayes rule

arg max
k∈C

P {Y = k ∣ X = x} , ∀x ∈ Rp

has the smallest expected error rate.

For binary classification, our goal is to estimate

p(x) = P {Y = 1 ∣ X = x} , ∀x ∈ Rp
.
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Logistic Regression

Logistic Regression is a parametric approach that assumes parametric
structure on

p(X ) = P(Y = 1 ∣ X ).

It assumes

p(X ) = e
β0+β1X1+⋯+βpXp

1 + eβ0+β1X1+⋯+βpXp
.

The function f (t) = e
t/(1 + e

t) is called the logistic function.
β0, . . . , βp are the parameters.

It is easy to see that we always have 0 ≤ p(X ) ≤ 1.

Note that p(X ) is NOT a linear function either in X or in β.
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Logistic Regression

A bit of rearrangement gives

p(X )
1 − p(X )
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

odds

= e
β0+β1X1+⋯+βpXp ,

log [ p(X )
1 − p(X )]

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
log-odds (a.k.a. logit)

= β0 + β1X1 +⋯+ βpXp.

odds ∈ [0,∞) and log-odds ∈ (−∞,∞).

Similar interpretation as linear models.

How to estimate β0, . . . , βp?
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Maximum Likelihood Estimator (MLE)

Given Dtrain
= {(x1, y1), ..., (xn, yn)} with yi ∈ {0, 1}, we estimate the

parameters by maximizing the likelihood of Dtrain
.

The maximum likelihood principle

The maximum likelihood principle is that we seek the estimates of
parameters such that the fitted probability are the closest to the
individual’s observed outcome.
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Cont’d: MLE under logistic regression

General steps of computing the MLE:

Write down the likelihood, as always!

Solve the optimization (maximization) problem.

The MLE has many nice properties!

Asymp consistent.

Asymp normal.

And more......
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Inference under logistic regression

Let β̂ be the MLE.

Z-statistic is similar to t-statistic in regression, and is defined as

β̂j

SE(β̂j)
, ∀j ∈ {0, 1, . . . , p}.

It produces p-value for testing the null hypothesis

H0 ∶ βj = 0 v.s. H1 ∶ βj ≠ 0.

A large (absolute) value of the z-statistic or small p-value indicates
evidence against H0.
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Example: Default data

Consider the Default data using balance, income, and student status as
predictors.
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Prediction at different levels under logistic regression

Let β̂0, . . . , β̂p be the MLE.

Prediction of the logit at x ∈ Rp
:

ˆlogit(x) = β̂0 + β̂1x1 +⋯+ β̂pxp.

Prediction of the conditional probability P(Y = 1 ∣ X = x):

P̂(Y = 1 ∣ X = x) = e
β̂0+β̂1x1+⋯+β̂pxp

1 + e β̂0+β̂1x1+⋯+β̂pxp

Prediction of the label Y (i.e. classification) at X = x :

ŷ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if P̂(Y = 1 ∣ X = x) ≥ 0.5;

0, otherwise.
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Prediction of P(Y = 1 ∣ X )
Consider the Default data with student status as the only feature.

What is the probability of default for a student?

To fit the model, we encode student status as 1 for student and 0
otherwise.
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Metrics used for evaluating classifiers

In classification, we have several metrics that can be used to evaluate a
given classifier.

The most commonly used metric is the overall classification accuracy.

For binary classification, there are a few more out there.....
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Logistic Regression on the Default Data

Classify whether or not an individual will default on the basis of credit card
balance and student status. The confusion matrix on default data.

The training error rate is (23 + 252)/10000 = 2.75%.

False positive rate (FPR): The fraction of negative examples that
are classified as positive: 23/9667 = 0.2% in default data.

False negative rate (FNR): The fraction of positive examples that

are classified as negative: 252/333 = 75.7% in default data.
1

1
For a credit card company that is trying to identify high-risk individuals, the error

rate 75.7% among individuals who default is unacceptable.
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Types of Errors for binary classification

The FNR is too high. How to modify the logistic classifier to lower
the FNR?

The current classifier is based on the rule

P̂(default = yes ∣ X = x) ≥ 0.5.

To lower FNR, we reduce the number of negative predictions.
Classify X = x to yes if

P̂ (Y = yes ∣ X = x) ≥ t.

for some t < 0.5.
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Trade-off between FPR and FNR

We can achieve better balance between FPR and FNR by varying the
threshold:
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ROC Curve

The ROC curve is a popular graphic for simultaneously displaying FPR and
TPR = 1 - FNR for all possible thresholds.

The overall performance of a classifier, summarized over all thresholds, is
given by the area under the curve (AUC). High AUC is good.
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More metrics in the binary classification

The above also defines sensitivity and specificity.
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Computation of the MLE under Logistic Regression

General steps of computing the MLE:

Write down the likelihood, as always!

Solve the optimization problem.
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Likelihood under Logistic Regression

For simplicity, let us set β0 = 0 such that

p(x) = e
x
⊤
β

1 + ex
⊤β
, 1 − p(x) = 1

1 + ex
⊤β
.

The data consists of (x1, y1), . . . , (xn, yn) with

yi ∼ Bernoulli(p(xi)), p(xi) =
e
x
⊤
i β

1 + ex
⊤
i β
, 1 ≤ i ≤ n.

What is the likelihood of yi?
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Likelihood under Logistic Regression

The likelihood of each data point (xi , yi) at any β is

Li(β) = [p(xi)]yi [1 − p(xi)]1−yi

with

p(xi) =
e
x
⊤
i β

1 + ex
⊤
i β
.

The joint likelihood of all data points is

L(β) =
n

∏
i=1

[p(xi)]yi [1 − p(xi)]1−yi .
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Log-likelihood under Logistic Regression

The log-likelihood at any β is

`(β) = log {
n

∏
i=1

[p(xi)]yi [1 − p(xi)]1−yi}

=

n

∑
i=1

[yi log(p(xi)) + (1 − yi) log(1 − p(xi))]

=

n

∑
i=1

[yi log ( p(xi)
1 − p(xi)

) + log(1 − p(xi))]

=

n

∑
i=1

[yix⊤i β − log (1 + e
x
⊤
i β)] .
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How to compute the MLE?

How do we maximize the log-likelihood

`(β) =
n

∑
i=1

[yix⊤i β − log (1 + e
x
⊤
i β)]

for logistic regression?

It is equivalent to minimize −`(β) over β.

No direct solution: taking derivatives of `(β) w.r.t. β and setting
them to 0 doesn’t have an explicit solution.

Need to use iterative procedure.
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A general problem of solving a minimization problem

Suppose we want to solve the following problem

ŵ = argmin
w∈Θ

J (w;Dtrain) ∶= argmin
w∈Θ

J (w)

where J (w;Dtrain) is a differentiable function in w, and depends on Dtrain

as well, and Θ is a subspace of Rp
.

The optimal solution (if exists) must be a critical point,
i.e. point to which the derivative is zero
(partial derivatives to zero for multi-dimensional parameter).
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Finding the optimal solution requires to solve the equations

Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

∂

∂x1
f (x1, x2) = lim

h→0

f (x1 + h, x2) − f (x1, x2)
h

The minimum must occur at a point where the partial derivatives are
zero.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂g
∂w1

⋮
∂g
∂wp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

This turns out to give a system of linear equations, which we can
solve analytically in some scenarios.

We may also use optimization techniques that iteratively get us closer
to the solution.
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Direct solution

OLS:
ŵ = argmin

w∈Rp
J (w) = argmin

w∈Rp
∥y − Xw∥2

2.

The partial derivatives w.r.t. w are

∂g

∂w
= −2X

⊤(y − Xw).

(If not familiar with multi-dimensional derivatives, calculate ∂g
∂wj

and

stack them together).
Setting the above equal to zero results

X
⊤

Xŵ = X
⊤

y, ⇒ ŵ = (X
⊤

X)
−1

X
⊤

y.
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Direct solution

Ridge:

ŵ
R
λ = argmin

w∈Rp
J (w) = argmin

w∈Rp
∥y − Xw∥2

2 + λ∥w∥2
2.

The partial derivatives w.r.t. w are

∂g

∂w
= −2X

⊤(y − Xw) + 2λw.

Setting the above equal to zero results

(X
⊤

X + λIp)ŵ
R
λ = X

⊤
y, ⇒ ŵ

R
λ = (X

⊤
X + λIp)

−1
X
⊤

y.
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Gradient Descent

Now let’s see a second way to solve

ŵ = argmin
w

J (w)

which is more broadly applicable: gradient descent.

Many times, we do not have a direct solution to

∂J
∂w

= 0.

Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.
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Gradient Descent

We initialize w to something reasonable (e.g. all zeros) and repeatedly
adjust them in the direction of steepest descent.

What is the direction of the steepest descent of J (w) at w?
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Gradient Descent

By definition, the direction of the greatest increase in J (w) at w is
its gradient ∂J /∂w. So, we should update w in the opposite
direction of the gradient descent.

The following update always decreases the cost function for small
enough α (unless ∂J /∂wj = 0): at the (k + 1)th iteration,

w
(k+1)
j ← w

(k)
j − α

∂J
∂wj

»»»»»»w=w(k)

α > 0 is a learning rate (or step size). The larger it is, the faster

w
(k+1)

changes relative to w
(k)

▶ We’ll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001.
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Gradient descent for OLS

Example

ŵ = argmin
w∈Rp

J (w), J (w) = ∥y − Xw∥2
2.

Update rule in vector form at the k + 1th iteration:

w
(k+1)

← w
(k)
− α

∂J
∂w

»»»»»»w=w(k)

= w
(k)
+ 2αX

⊤(y − Xw
(k)).

Initialization: w
(0)

= 0.
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Stopping criteria

When do we stop?

The objective value stops changing:

∣J (w
(k+1)) − J (w

(k))∣ is small, i.e. ≤ 10
−6

.

The parameter stops changing: ∥w
(k+1) −w

(k)∥2 is small or

∥w
(k+1) −w

(k)∥2/∥w
(k)∥2 is small.

When we reach the maximum number (M) of iterations, e.g.
M = 1000.
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Gradient descent for solving the MLE under logistic
regression

Recall we would like to solve

min
w∈Rp

J (w)

where

J (w) = −`(w) =
n

∑
i=1

[−yix⊤i w + log (1 + e
x
⊤
i w)] .

The gradient at any w is that, for any j ∈ {1, . . . , p},

∂ [−`(w)]
∂wj

=

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−yi +

e
x
⊤
i w

1 + ex
⊤
i w

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xij (verify this!)
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Updates and stopping criteria

Therefore, at the (k + 1)th iteration, with the learning rate α,

ŵ
(k+1)

= ŵ
(k)
− α

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−yi +

e
x
⊤
i ŵ

(k)

1 + ex
⊤
i ŵ(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi .

Initialization w
(0)

= 0.

The objective value stops changing: ∣`(ŵ
(k+1)) − `(ŵ

(k))∣ is small,
say, ≤ 10

−6
.

The parameter stops changing: ∥ŵ
(k+1) − ŵ

(k)∥2 is small or

∥ŵ
(k+1) − ŵ

(k)∥2/∥ŵ
(k)∥2 is small.

Stop after M iterations for some specified M, e.g. M = 1000.
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When should we expect Gradient Descent to work?

Recall we try to solve
ŵ = argmin

w∈Θ
J (w).

Obviously, J needs to be differentiable.

If J is also a convex function and Θ is a convex set, then Gradient
Descent finds the optimal solution.

In many cases, Θ = Rp
which is convex.
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Convex Sets

A set S is convex if for any x0, x1 ∈ S,

(1 − λ)x0 + λx1 ∈ S for all 0 ≤ λ ≤ 1.

The Euclidean space Rp
is a convex set.
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Convex Sets and Functions

A function f is convex if for any x0, x1 in the domain of f ,

f ((1 − λ)x0 + λx1) ≤ (1 − λ)f (x0) + λf (x1), ∀λ ∈ [0, 1].

Equivalently, the set of
points lying above the
graph of f is convex.

Intuitively: the function
is bowl-shaped.
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How to tell a loss is convex?

1. Verify the definition.

2. If f is twice differentiable and f
′′(x) ≥ 0 for all x , then f is convex.

▶ the least-squares loss function (y − t)2
is convex as a function of t

▶ the function
−yt + log (1 + e

t)
is convex in t.

3. There are other sufficient conditions for convex, but
non-differentiable, functions!
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4 A composition rule: linear functions preserve convexity.
▶ If f is a convex function and g is a linear function, then both f ◦ g and

g ◦ f are convex.
▶ the least-square loss (y − x

⊤
w)2

is convex in w
▶ the negative log-likelihood under logistic regression

−yx
⊤

w + log (1 + e
x
⊤

w)

is convex in w.

▶ Both ∑i(yi − x
⊤
i w)2

and ∑i [−yix
⊤
i w + log (1 + e

x
⊤
i w)] are convex in

w.

There are more composition rules!

A great book:

Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

Stat methods for ML (UofT) STA314-Lec8 37 / 49



Gradient Descent for Linear Regression

The squared error loss

∑
i=1

(yi − x
⊤
i w)2

of linear regression is a convex function. So there is a unique solution.
Even in this case, we sometimes need to use GD.

Why gradient descent, if we can find the optimum directly?
▶ When p is large, GD is more efficient than direct solution

▶ Linear regression solution: (X
⊤

X)−1
X
⊤

y
▶ Matrix inversion is an O(p3) algorithm
▶ Each GD update costs O(np)
▶ Or less with stochastic GD (Stochastic GD, later)
▶ Huge difference if p ≫

√
n
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Gradient descent for solving the MLE under logistic
regression

The negative log-likelihood

−`(w) =
n

∑
i=1

[−yix⊤i w + log (1 + e
x
⊤
i w)]

is convex in w.

So we can use gradient descent to find the minima of the logistic loss!

GD can be applied to more general settings!
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Effect of the Learning Rate (Step Size)

In gradient descent, the learning rate α is a hyperparameter we need
to tune. Here are some things that can go wrong:

α too small:
slow progress

α too large:
oscillations

α much too large:
instability

Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1, 0.03, 0.01, . . .).
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Training Curves

To diagnose optimization problems, it’s useful to look at the training
cost: plot the training cost as a function of iteration.

Warning: the training cost could be used to check whether the
optimization problem reaches certain convergence. But

▶ It does not tell whether we reach the global minimum or not
▶ It does not tell anything on the performance of the fitted model
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Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_

regression.pdf#page=21
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Batch Gradient Descent

Recall that
▶ OLS:

ŵ
(k+1)

= ŵ
(k)
+ α

n

∑
i=1

[yi − x
⊤
i ŵ

(k)] xi .

▶ Logistic regression:

ŵ
(k+1)

= ŵ
(k)
+ α

n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
yi −

e
x
⊤
i ŵ

(k)

1 + ex
⊤
i ŵ(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi .

Computing the gradient requires summing over all of the training
examples, which can be done via matrix / vector operations.
The fact that it uses all training samples is known as batch training.
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Stochastic Gradient Descent

Batch training is impractical if you have a large dataset (e.g. millions of
training examples, n ≈ 10 millions)!

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example.

For each iteration k ∈ {1, 2, . . .},

1. Choose i ∈ {1, . . . , n} uniformly at random
2. Update the parameters by ONLY using this ith sample,

ŵ
(k+1)

= ŵ
(k)
+ α [yi − x

⊤
i ŵ

(k)] xi

ŵ
(k+1)

= ŵ
(k)
+ α

⎡⎢⎢⎢⎢⎢⎢⎢⎣
yi −

e
x
⊤
i ŵ

(k)

1 + ex
⊤
i ŵ(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi .
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Stochastic Gradient Descent

ŵ
(k+1)

= ŵ
(k)
+ α [yi − x

⊤
i ŵ

(k)] xi

ŵ
(k+1)

= ŵ
(k)
+ α

⎡⎢⎢⎢⎢⎢⎢⎢⎣
yi −

e
x
⊤
i ŵ

(k)

1 + ex
⊤
i ŵ(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xi .

Pros:

Computational cost of each SGD update is independent of n!

SGD can make significant progress before even seeing all the data!

Mathematical justification: the gradients between SGD and GD have
the same expectation for i.i.d. data.

Stat methods for ML (UofT) STA314-Lec8 45 / 49



Stochastic Gradient Descent

Cons: using single training example to estimate gradient:

Variance in the estimate may be high

Compromise approach:

compute the gradients on a randomly chosen medium-sized set of
training examples M ⊂ {1, . . . , n}, called a mini-batch.

Stochastic gradients computed on larger mini-batches have smaller
variance.

The mini-batch size ∣M∣ is a hyperparameter that needs to be set.
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Stochastic Gradient Descent

Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent
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Learning Rate

In gradient descent, the learning rate α is a hyperparameter we need
to tune. Here are some things that can go wrong:

α too small:
slow progress

α too large:
oscillations

α much too large:
instability

Good values are typically small. You should do a grid search if you
want good performance (i.e. try 0.1, 0.03, 0.01, . . .).
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SGD Learning Rate

In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

Typical strategy:
▶ Use a large learning rate early in training so you can get close to the

optimum
▶ Gradually decay the learning rate to reduce the fluctuations
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