STA 314: Statistical Methods for Machine Learning I

Lecture 6 - Moving beyond linearity

Xin Bing

Department of Statistical Sciences University of Toronto

Review on regularized linear regression

- OLS that uses p features based on n data points cannot perform well when p is large relative to n.
- Regularized approach such as Lasso and Ridge can have better performance
 - Reduce variance
 - ▶ Pay extra bias
- The benefit of regularization could be significant if the true model coefficients are either small or sparse.
 - ▶ If only $s \ll p$ features are predictive, we should only fit OLS by using these s features.

Linearity in features vs in parameters

The linearity assumption in the feature space (in X) is almost always an approximation, and sometimes a poor one.

Example

Consider $X = (X_1, X_2)$.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon.$$

What about the following one?

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X^2 + \beta_5 (X_1 X_2) + \epsilon.$$

Also a linear model in $\beta = (\beta_0, \beta_1, \dots, \beta_4)$ but not in $X = (X_1, X_2)$. **Implication:** can deploy

- OLS
- Subset selection
- Regularized linear regression

Moving Beyond Linearity

We consider the following extensions to relax the linearity assumption (in the feature space).

- Univariate case (p = 1):
 - ▶ Polynomial regression
 - Step functions
 - Regression splines
- Multivariate case (p > 1):
 - ▶ Local regression
 - Generalized additive models

Polynomial Regression

• The polynomial regression assumes

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d + \epsilon_i,$$

where ϵ_i is the error term and $x_i \in \mathbb{R}$.

- Can be fitted by the OLS approach, the ridge and the lasso.
- Coefficients themselves are not interpretable; we are more interested in the trend of the fitted function

$$\hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 x^2 + \dots + \hat{\beta}_d x^d, \quad \forall x \in \mathbb{R}.$$

Polynomial Regression

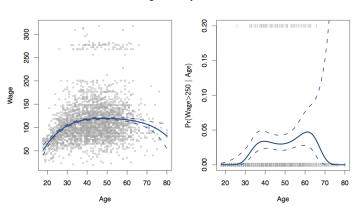
- The degree d in practice is typically no greater than 4, and can be chosen via cross-validation.
- The polynomial regression can be used for classification as well.
 - For instance, in the logistic regression,

$$\operatorname{logit}\left(\mathbb{P}(Y_i=1\mid X_i=x_i)\right)=\beta_0+\beta_1x_i+\beta_2x_i^2+\cdots+\beta_dx_i^d.$$

- Can be fit by maximizing the likelihood.
- However, polynomials have notorious tail behavior very bad for extrapolation.

The Wage Data

Degree-4 Polynomial



Left: The solid blue curve is a degree-4 polynomial of wage as a function of age, fit by the OLS. The dotted curves are estimated 95 % confidence intervals.

Right: Model the binary event 1{wage > 250} by logistic regression, with a degree-4 polynomial.

Step Functions

- The polynomial regression imposes a global structure on the non-linearity of X.
- The **step function** approach avoids such a global structure by breaking the range of *X* into bins.
- For pre-specified K cut points c_1, \ldots, c_K , define

$$C_0(X) = 1\{X < c_1\},$$

$$C_1(X) = 1\{c_1 \le X < c_2\},$$

$$\vdots$$

$$C_K(X) = 1\{c_K \le X\}.$$

 $C_0(X), \ldots, C_K(X)$ are in fact (K+1) dummy variables, and they sum up to 1.

Step Functions

Step function approach assumes

$$y_i = \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \dots + \beta_K C_K(x_i) + \epsilon_i$$

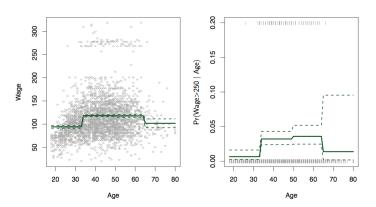
where ϵ_i is the error term.¹

- Can be fitted by the OLS.
- Interpretation: β_j represents the average change in the response Y for $c_j \le X < c_{j+1}$ relative to $X < c_1$.

¹We don't need $C_0(x_i)$ in the model when we also have the intercept term β_0 .

The Wage Data

Piecewise Constant



Left: The solid blue curve is a step function of wage as a function of age, fit by least squares. The dotted curves indicate an estimated 95~% confidence interval.

Right: Model the binary event 1{wage > 250} by logistic regression, with the step function.

Pros and Cons of Step Function

- The step function approach is widely used in biostatistics and epidemiology among other areas:
 - ▶ the model is easy to fit
 - ▶ the regression coefficient has a natural interpretation
- However, piecewise-constant functions can miss the trend of the true relationship between Y and X. The choice of cut points can be difficult to specify.
- How about combining polynomial and step function?

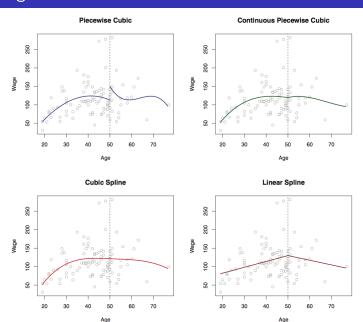
Piecewise Polynomials

• Instead of a single polynomial in *X* over its whole domain, we can use different polynomials in different regions:

$$y_i = \begin{cases} \beta_{01} + \beta_{11} x_i + \beta_{21} x_i^2 + \beta_{31} x_i^3 + \epsilon_i & \text{if } x_i < c; \\ \beta_{02} + \beta_{12} x_i + \beta_{22} x_i^2 + \beta_{32} x_i^3 + \epsilon_i & \text{if } x_i \ge c. \end{cases}$$

- The cut point c is called knot. Using more knots leads to a more flexible piecewise polynomial.
- In general, if we place K different knots throughout the range of X, then we will end up fitting (K+1) different cubic polynomials.

The Wage Data



Regression splines

- Better to add constraints to polynomials at the knots for:
 - continuity: equal function values
 - smoothness: equal first and second order derivatives
 - higher order derivatives
- The constrained polynomials are called **splines**. A degree-d spline contains piecewise degree-d polynomials, with continuity in derivatives up to degree (d-1) at each knot.
- How can we construct the degree-d spline?

Linear Splines

• A **linear spline** has piecewise linear functions continuous at each knot. That is, with knots at $\xi_1 < \xi_2 < \cdots < \xi_K$,

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 (x_i - \xi_1)_+ \cdots + \beta_{K+1} (x_i - \xi_K)_+ + \epsilon_i$$

where, for each $1 \le k \le K$,

$$(x_i - \xi_k)_+ = \begin{cases} x_i - \xi_k, & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}.$$

• Interpretation of β_1 : the averaged increase of Y associated with one unit of X for $X < \xi_1$.

Basis Functions

A basis representation:

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_K b_K(x_i) + \epsilon_i$$

where $b_k(\cdot)$ for $1 \le k \le K$ are basis functions:

Polynomials:

$$b_k(x_i) = x_i^k.$$

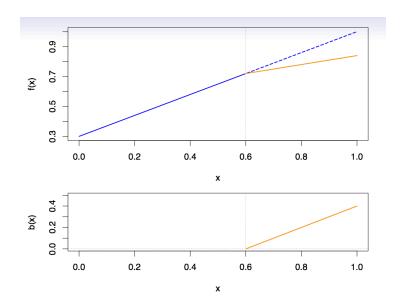
• Step Functions:

$$b_k(x_i) = C_k(x_i).$$

Linear splines:

$$b_1(x_i) = x_i$$
, $b_k(x_i) = (x_i - \xi_{k-1})_+$, $k = 1, ..., K$,

Linear Splines



Cubic Splines

- A cubic spline has piecewise cubic polynomials with continuous derivatives up to order 2 at each knot.
- That is, with K knots at $\xi_1 < \xi_2 < \cdots < \xi_K$,

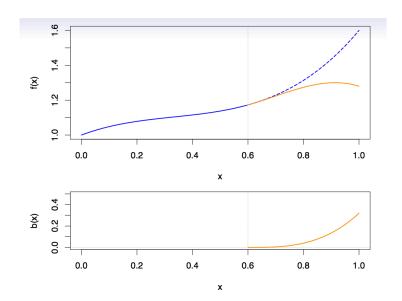
$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+3} b_{K+3}(x_i) + \epsilon_i,$$

where $b_k(\cdot)$ are basis functions

$$b_1(x_i) = x_i, \quad b_2(x_i) = x_i^2, \quad b_3(x_i) = x_i^3,$$

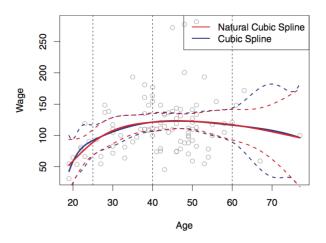
$$b_{k+3}(x_i) = (x_i - \xi_k)_+^3, \qquad k = 1, ..., K.$$

Cubic Splines



Natural Splines

A natural spline is a regression spline with additional boundary constraints: the function is required to be linear at the boundary.



More on splines

- Choosing the number and locations of the knots
 - ▶ Typically, we place *K* knots at certain quantiles of the data or place on the range of *X* with equal space. Oftentimes, the placement of knots is not very crucial.
 - We use cross-validation to choose K.
- Polynomial regressions and step functions are special cases of splines.
- Another variant: smoothing spline (ISLR 7.5).

Move beyond linearity

What about p > 1?

- Local approach for p < 4
 - nearest neighor approach
 - local regression
- Generalized Additive Models (GAM) for large *p*.

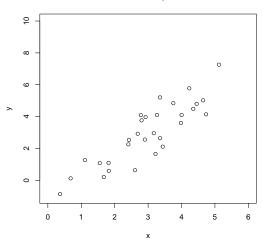
Local approach

Example (k nearest neighbours)

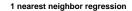
- Pick the number of neighbors $k \in \{1, ..., n\}$
- To predict at $X = x_0$, find the k neareast neighbors of x_0 among $\{x_1, \ldots, x_n\}$, collected in $\mathcal{N}_k(x_0)$
- Predict by using the local average

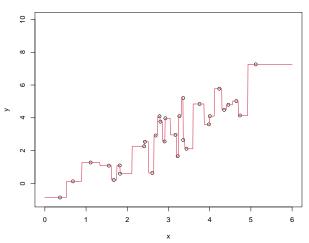
$$\hat{f}(x_0) = \frac{1}{k} \sum_{i \in \{1,\dots,n\}: x_i \in \mathcal{N}_k(x_0)} y_i$$

k nearest neighbors: the role of k

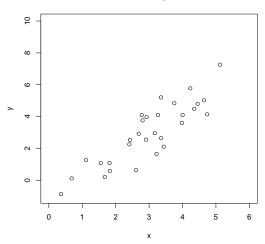


k = 1 nearest neighbor

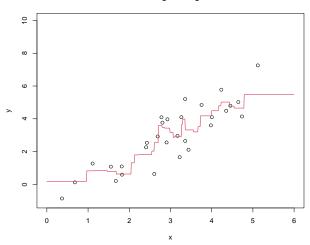




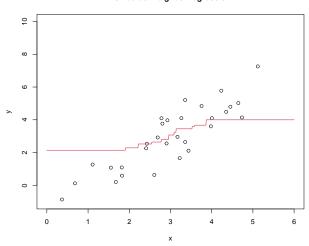
k = 3 nearest neighbors



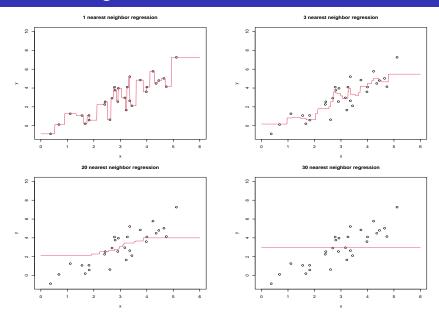
k = 3 nearest neighbors



k = 20 nearest neighbors



k nearest neighbours: role of k



Role of k

Controls the bias and variance tradeoff!

- A smaller k means more flexible predictor
 - Larger variance
 - ► Smaller bias
- How to select *k*?
 - CV!

Generalization of k-nn: weighted k-nn

Recall that k-nn predicts by using the local average

$$\hat{f}(x_0) = \sum_{i \in \{1, \dots, n\}: x_i \in \mathcal{N}_k(x_0)} \frac{1}{k} y_i.$$

Can we choose different weights for each neighbour?

$$\hat{f}(x_0) = \sum_{i \in \{1, ..., n\}: x_i \in \mathcal{N}_k(x_0)} K(x_i, x_0) \ y_i$$

with

$$0 \leq K\big(x_i,x_0\big) \leq 1, \qquad \sum_{i \in \{1,\dots,n\}: x_i \in \mathcal{N}_k(x_0)} K\big(x_i,x_0\big) = 1.$$

Choices of the weight

One popular choice is the so-called *inverse distance weighting* (IDW). Of course there are other more sophisticated weighting scheme.....

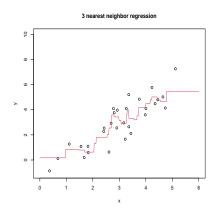
• IDW: Compute the inverse distances

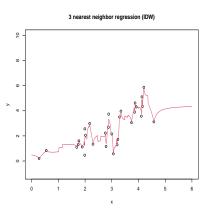
$$ID_i = \frac{1}{\|x_i - x_0\|_2}, \qquad \forall x_i \in \mathcal{N}_k(x_0).$$

The weights are

$$K(x_i, x_0) = \frac{ID_i}{\sum_{i: x_i \in \mathcal{N}_k(x_0)} ID_i}, \quad \forall x_i \in \mathcal{N}_k(x_0).$$

Weighted k-nn vs k-nn





Generalization of k-nn: local regression

Recall that k-nn predicts by using the local average of the **responses**

$$\hat{f}(x_0) = \frac{1}{k} \sum_{i:x_i \in \mathcal{N}_k(x_0)} y_i. \tag{1}$$

Local (linear) regression:

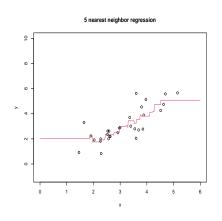
$$\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 \tag{2}$$

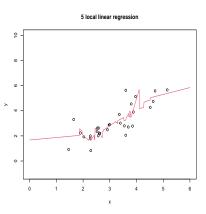
where

$$(\hat{\beta}_0, \hat{\beta}_1) = \underset{\beta_0, \beta_1}{\operatorname{argmin}} \sum_{i: x_i \in \mathcal{N}_k(x_0)} \frac{1}{k} (y_i - \beta_0 - \beta_1 x_i)^2.$$

Discussion: connection between (1) and (2)?

k-nn vs local linear regression





Local (linear) regression

Local regression predicts at a target point x_0 using only the nearby training observations in a weighted scheme.

Predict at $x = x_0$ by

$$\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

where

$$(\hat{\beta}_0, \hat{\beta}_1) = \underset{\beta_0, \beta_1}{\operatorname{argmin}} \sum_{i: x_i \in \mathcal{N}_k(x_0)} \frac{K(x_i, x_0)}{(y_i - \beta_0 - \beta_1 x_i)^2},$$

using the weighted least squares.

Local Regression

Algorithm 7.1 Local Regression At $X = x_0$

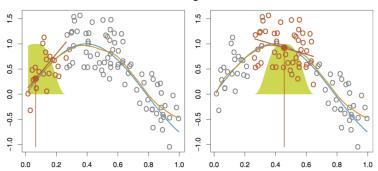
- 1. Gather the fraction s = k/n of training points whose x_i are closest to x_0 .
- 2. Assign a weight $K_{i0} = K(x_i, x_0)$ to each point in this neighborhood, so that the point furthest from x_0 has weight zero, and the closest has the highest weight. All but these k nearest neighbors get weight zero.
- 3. Fit a weighted least squares regression of the y_i on the x_i using the aforementioned weights, by finding $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize

$$\sum_{i=1}^{n} K_{i0} (y_i - \beta_0 - \beta_1 x_i)^2.$$
 (7.14)

4. The fitted value at x_0 is given by $\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0$.

Simulated Example

Local Regression



The blue curve is true f(x), and the light orange curve is the local regression $\hat{f}(x)$. The orange points are local to the target point x_0 , represented by the orange vertical line. The yellow bell-shape indicates weights assigned to each point. The fit $\hat{f}(x_0)$ at x_0 is obtained by fitting a weighted linear regression (orange line segment), and using the fitted value at x_0 (orange solid dot) as the estimate $\hat{f}(x_0)$.

Local Regression

- The size of the neighborhood (fraction s of training data) is a tuning parameter, which can be chosen by cross-validation.
- The weight of each point in the neighborhood needs to be specified.
- When we have two dimensional predictors X_1 and X_2 , we can simply use 2-dimensional neighborhoods, and fit bivariate linear regression models using the observations that are near each target point in 2-dimensional space.
- However, local regression can perform poorly if $p \ge 4$ (the curse of dimensionality).

Generalized Additive Models

 Generalized additive models (GAMs) provide a general framework for extending a standard linear model by allowing non-linear functions of each of the variables, while maintaining additivity,

$$y_i = \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_p(x_{ip}) + \epsilon_i.$$

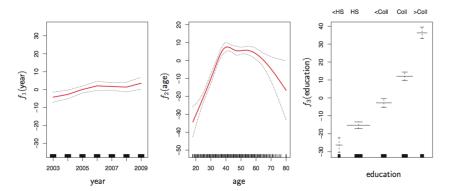
- Each f_j for $1 \le j \le p$ can be linear functions, polynomials, step functions, splines and local regression.
- Can be applied to classification problems.
 - Logistic regression:

$$\operatorname{logit}(\mathbb{P}(Y_i = 1 \mid X_i = x_i)) = \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_p(x_{ip}).$$

Wage Data

Consider the wage data

wage =
$$\beta_0 + f_1(\text{year}) + f_2(\text{age}) + f_3(\text{education}) + \epsilon$$
.



The first two functions are natural splines in year and age. The third function is a step function, fit to the qualitative variable education.

Pros and Cons of GAMs

- GAMs allow us to fit a non-linear function f_j to each X_j : model complicated relationship between the respone and the original feature space.
- The non-linear fit can potentially improve prediction accuracy.
- Because the model is additive, we can still examine the effect of each X_j on Y individually while holding all of the other variables fixed.
- It avoids the curse of dimensionality by assuming additivity.
- However, GAMs fail to incorporate the interaction of variables.

So far on regression problems

- Linear regression already covers a wide range of models!
 - Polynomials
 - Step functions
 - Splines
 - ▶ GAMs
- Local approaches
 - ▶ k-nn
 - local regressions
- Later we will learn tree-based approaches!