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Review

We have learned two approaches for model selection when we don’t have
Dtest :

Avoid estimating the expected MSE by adjusting the training error to
account for the model complexity:

▶ Mallow’s Cp
▶ AIC
▶ BIC
▶ adjusted R

2

Directly estimate the expected MSE via data-splitting:
▶ validation set approach
▶ cross-validation approach
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Application to model selection in linear models

Recall that we have the following alternatives to the OLS using all
predictors:

Subset Selection. We identify a subset of the p predictors that we
believe to be related to the response. We then fit a model using the
OLS approach on the identified set of predictors.

▶ Best Subset Selection
▶ Stepwise Selection

Shrinkage Regression
▶ Ridge
▶ Lasso

Dimension Reduction. Later after PCA.
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Best Subset Selection

Example

Suppose we have access to i.i.d. samples of the response Y and the
features

X = (X1,X2,X3).
For fitting a regression that is linear in X , what are the all possible subsets?
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Best Subset Selection

Step 2 identifies the best model for each subset size. RSS can be used here. Why?

In Step 3, can we use RSS or R
2
?
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Best Subset Selection

The same approach can be used for other types of models, such as
logistic regression (RSS replaced by deviance).

However! For best subset selection, we need to fit and compare

(p0) + (p1) + (p2) +⋯+ (pp) = 2
p

models.
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Forward Stepwise Selection

Example (Revisited)

Suppose we have access to i.i.d. samples of the response Y and the
features

X = (X1,X2,X3).
What are the models we consider for forward stepwise?
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Forward Stepwise Selection
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Forward Stepwise Selection

Pros: It has computational advantage over best subset selection.
In the kth iteration, we fit and compare (p − k) models. In total,

1 +
p−1

∑
k=0

(p − k) = 1 +
p(p + 1)

2

models are considered, much fewer than 2
p

models.

Cons: It is a greedy procedure!
So not guaranteed to find the best possible model out of all 2

p

models containing subsets of the p predictors.
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The Credit Card Data
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Backward Stepwise Selection

Example (Revisited)

Suppose we have access to i.i.d. samples of the response Y and the
features

X = (X1,X2,X3).
What are the models we consider for backward stepwise?
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Backward Stepwise Selection
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Backward Stepwise Selection

For backward stepwise selection, we also compare 1 + p(p + 1)/2
models, much fewer than 2

p
models.

Still a greedy approach!
It is not guaranteed to find the best possible model out of all 2

p

models containing subsets of the p predictors.
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The Credit Card Data: best subset selection via Mallow’s

Cp, BIC and adjusted R
2
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The Credit Card Data: model selection via sample-splitting
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Summary on subset selection

Best subset selection will select the best model, as long as
computation is affordable.

Forward / Backward stepwise selection is computationally fast, but is
not guaranteed to find the best model.

What should we do in practice?
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Shrinkage Methods / Regularization

We can fit a model containing all p predictors using a technique that
constrains or regularizes the coefficient estimates by shrinking the
coefficient estimates towards zero.

Shrinking the coefficient estimates can significantly reduce their
variances.

The two best-known techniques for shrinking the regression
coefficients towards zero are the ridge regression and the lasso.
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Ridge Regression

Recall that the OLS fitting procedure estimates β0, ..., βp using the
values that minimize

RSS =
n

∑
i=1

(yi − β0 −
p

∑
j=1

βjxij)2
.

The ridge regression estimates β0, . . . , βp using the values that
minimize

n

∑
i=1

(yi − β0 −
p

∑
j=1

βjxij)2
+ λ

p

∑
j=1

β
2
j = RSS + λ

p

∑
j=1

β
2
j

where λ ≥ 0 is a tuning (regularization) parameter, to be determined
later.
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Comments

β̂
R
λ = argmin

β=(β0,...,βp)∈Rp+1

n

∑
i=1

(yi − β0 −
p

∑
j=1

βjxij)2

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
RSS

+λ
p

∑
j=1

β
2
j .

We usually denote the ridge regression estimator by β̂
R
λ , because

different λ’s produce distinct estimators.

The term λ∑p
j=1 β

2
j is called a shrinkage / regularization penalty,

which shrinks the estimates of each βj towards 0.

We usually do not penalize the intercept β0.

Comparing to the OLS estimator, the ridge regression finds the
coefficient estimate of β that has small entries (toward 0) by
affording a slightly larger RSS . The balance is controlled by λ.
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More Comments

Selecting a good value for λ is critical. For λ = 0, the ridge estimator
of β coincides with the OLS estimator. Cross-validation could be
used to select λ.

In practice, we recommend the standardized predictors for ridge
regression, using the formula

x̃ij =
xij√

1
n
∑n

i=1(xij − x̄j)2
.

All standardized predictors have standard deviation equal to one.
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Credit Card Data Example

In the left-hand panel, each curve corresponds to the ridge regression coefficient estimate
for one of the 10 variables, plotted as a function of λ.

The right-hand panel displays the same ridge coefficient estimates as the left-hand panel,

but we now display ∥β̂R
λ∥2/∥β̂∥2, where β̂ denotes OLS estimator.
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Ridge Regression Improves Over OLS in terms of MSE

Squared bias (black), variance (green), and test mean squared error (purple) for the ridge
regression. The dashed lines indicate the smallest possible MSE.
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Advantages of Ridge Regression

Ridge does a better job for prediction than the OLS approach by
reducing the coefficient estimates.

▶ Ridge reduces the variance of fitted model by trading off the bias

Ridge regression is computationally efficient (for a given λ),
comparable to the OLS approach. In particular, it has substantial
computational advantages over the best subset selection.
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Limitation of Ridge Regression

Can we use ridge regression for variable selection (excluding features
that are not important by setting their estimates to 0)?

No, it tends to include all p features in the fitted model!

So, the resulting fitted model is difficult to interpret.
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The Lasso

Different from ridge, lasso shrinks the coefficients by penalizing their
absolute values.

Specifically, the lasso coefficients, β̂
L
λ, minimize the quantity

n

∑
i=1

(yi − β0 −
p

∑
j=1

βjxij)2
+ λ

p

∑
j=1

∣βj ∣ = RSS + λ
p

∑
j=1

∣βj ∣,

where λ ≥ 0 is a tuning parameter, to be determined later.

Different from the ridge regression that uses the `2 penalty

∥β∥2
2 =

p

∑
j=1

β
2
j ,

lasso uses the `1 penalty

∥β∥1 =

p

∑
j=1

∣βj ∣.
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More Comments

Similar to ridge regression, the lasso shrinks the coefficient estimates
towards zero.

However, in the case of the lasso, the `1 penalty has the effect of
forcing some of the coefficient estimates to be exact zero when the
tuning parameter λ is sufficiently large.

Therefore, the lasso performs variable selection.

We say that the lasso yields a sparse model if the fitted model
involves only a subset of the variables.

Similar to ridge regression, selecting a good value of the
regularization parameter λ for the lasso is critical; cross-validation is
again the method of choice.

Stat methods for ML (UofT) STA314-Lec4 26 / 27



Credit Card Data Example
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Credit Card Data Example

In the left-hand panel, each curve corresponds to the ridge regression coefficient estimate
for one of the 10 variables, plotted as a function of λ.

The right-hand panel displays the same ridge coefficient estimates as the left-hand panel,

but we now display ∥β̂R
λ∥2/∥β̂∥2, where β̂ denotes OLS estimator.
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