
STA314: Statistical Methods for Machine Learning I

Midterm Exam – LEC0201
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Problem 1 (6 points)

Assume that we analyze the Carseats data set. The goal is to predict Sales.
Based on the following output of R, answer the questions.

Call:

lm(formula = Sales ~ Income + Advertising + Price + US

+ Advertising:US, data = Carseats)

Coefficients:

Estimate Std.Error t-value Pr(>|t|)

(Intercept) 12.205105 0.688920 17.716 <2e-16 ***

Income 0.010972 0.004298 2.553 0.0111 *

Advertising 0.043718 0.122387 0.357 0.7211

Price -0.053712 0.005069 -10.596 <2e-16 ***

USNo -0.075873 0.360800 -0.210 0.8335

Advertising:USNo 0.079992 0.124952 0.640 0.5224

---

Residual standard error: 2.387 on 394 degrees of freedom

Multiple R-squared: 0.2945,Adjusted R-squared: 0.2856

F-statistic: 32.9 on 5 and 394 DF, p-value: < 2.2e-16

(1) (1 point) The feature US is a factor with two levels: Yes or No. Based
on the above output, write down the way the feature US is encoded.

SOLUTION: USNo = 1{US = No}.

2



(2) (1 point) In this linear regression model, how do you interpret the co-
efficient of USNo?

SOLUTION: It represents the unit change of Sales for a non-US coun-
try comparing to the US when Advertising equals 0 and other features
are held fixed.

(3) (1 point) How do you interpret the coefficient of Advertising:USNo?

SOLUTION: It means the difference of unit-change of Sales between
non-US countries and the US for one unit increase in Advertising with
other features held fixed.

(4) (1 point) Based on the R output, can you conclude whether or not
Advertising is significant for predicting Sales at 0.05 significance le-
vel? Please state your reasoning.

SOLUTION: No. Even though the coefficient of Advertising is not
significant, the effect of Advertising also depends on the coefficient of
the interaction term.

(5) (2 points) Construct the 95% confidence interval for the coefficient of
Income. (Writing out the expression suffices. You don’t need to calculate
the exact values.) Interpret the meaning of a 95% confidence interval.
(You may assume the estimated coefficient is normal and use P{Z ≤
1.96} ≈ 0.975 for Z ∼ N(0, 1))

SOLUTION: The 95% CIs is

[0.010972± 1.96× 0.004298] .

It means if we sample 100 times of the training data and repeat our
procedure to obtain 100 corresponding 95% confidence intervals as abo-
ve, there would be around 95% of these CIs contain the true coefficient
of Income. (PS: other reasonable interpretations are allowed).
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Problem 2 (8 points)

In a regression problem, assume that the true model is Y = f(X1, X2, X3)+ε,
where

f(X1, X2, X3) = X2 +X3 +X2
3 ,

and ε is a random noise. Suppose we fit the following two models by using
the training data containing n realizations of (Y,X1, X2, X3)

(M1) Y ∼ X1 +X2 +X3,

(M2) Y ∼ X1 +X2 +X3 +X2
1 +X2

2 +X2
3 .

Here the notation Y ∼ X + X ′ means to regress Y onto X and X ′ via the
Ordinary Least Squares approach. Under each model, we can construct an
estimator of the regression function, denoted by f̂i for i ∈ {1, 2}.

Please compare the two models, and give a short explanation, in terms of the
following aspects. (For example, M1 has larger variance than M2 or there is
no sufficient information about the comparison.)

(a) (2 points) squared bias of f̂i

SOLUTION: M2 has smaller bias as it includes all relevant features in
the true model.

(b) (2 points) variance of f̂i

SOLUTION: M2 has larger variance it includes additional features.
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(c) (2 points) the test MSE of f̂i

SOLUTION: No sufficient information to tell due to the bias-variance
tradeoff.

(d) (2 points) the training MSE of f̂i

SOLUTION: M2 has a smaller training MSE as adding additional
features leads to smaller training MSE (or, equivalently, RSS).
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Problem 3 (8 points)

Answer the following questions about the subset selection.

(a) (2 points) Given the following R code and output,

summary(regsubsets(Balance ~ Cards + Rating + Limit

+ Income + Student, Credit, method = "forward"))

5 Variables (and intercept)

Selection Algorithm: forward

Cards Rating Limit Income StudentYes

1 ( 1 ) " " "*" " " " " " "

2 ( 1 ) " " "*" " " "*" " "

3 ( 1 ) " " "*" " " "*" "*"

4 ( 1 ) " " "*" "*" "*" "*"

5 ( 1 ) "*" "*" "*" "*" "*"

write down all models with 4 features considered by the above code,
and indicate the best one. (You can use X1, . . . , X5 to represent the five
features in order)

SOLUTION: (X1, X2, X4, X5), (X2, X3, X4, X5).

The best one is:

Balance = β0 + β1X2 + β2X3 + β3X4 + β4X5 + ε.

(Full credits are given as long as the four features are correctly identi-
fied.)
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(b) (2 points) Given the following R code and output,

summary(regsubsets(Balance ~ Cards + Rating + Limit

+ Income + Student, Credit, method = "exhaustive"))

5 Variables (and intercept)

Selection Algorithm: exhaustive

Cards Rating Limit Income StudentYes

1 ( 1 ) " " "*" " " " " " "

2 ( 1 ) " " "*" " " "*" " "

3 ( 1 ) " " "*" " " "*" "*"

4 ( 1 ) "*" " " "*" "*" "*"

5 ( 1 ) "*" "*" "*" "*" "*"

write down all models with 4 features considered by the above code,
and indicate the best one. (You can use X1, . . . , X5 to represent the five
features in order)

SOLUTION: The possible models use the following sets of features:
(X1, X2, X3, X4), (X1, X2, X3, X5), (X1, X2, X4, X5),

(X1, X3, X4, X5), (X2, X3, X4, X5).

The best one is:

Balance = β0 + β1X1 + β2X3 + β3X4 + β4X5 + ε.

(Full credits are given as long as the four features are correctly identi-
fied.)
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(c) (2 points) Let’s denote the model you find in (a) by M1, and denote the
model in (b) by M2. Which model (M1 or M2) has smaller training MSE
(or there is no sufficient information to tell)? Please briefly explain the
answer.

SOLUTION: M2 has smaller training MSE. This is because for models
using the same number of features, the best subset selection considers
all possible models and selects the one with the smallest training MSE.

(d) (2 points) Which model would you expect to have smaller test MSE
(or there is no sufficient information to tell)? Please briefly explain the
answer.

SOLUTION: M2. As both models have the same number of features
(i.e. the same model complexity), a smaller training MSE also indicates
a smaller test MSE.
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Problem 4 (8 points)

Based on the following output of R, answer the following questions.

> library(ISLR)

> library(boot)

> set.seed(1)

> glm.fit2 = glm(mpg ~ poly(horsepower, 3), data=Auto)

> cv.glm(Auto, glm.fit2, K = nrow(Auto))$delta[1]

[1] 19.24821

(a) (1 point) Write down the model corresponding to line 4.

SOLUTION: With X being the horsepower,

Y = β0 + β1X + β2X
2 + β3X

3 + ε.

(b) (1 point) Briefly explain the meaning of the number 19.14336 in the
above R output.

SOLUTION: LOOCV error.

(c) (2 points) If we change set.seed(1) to set.seed(2) in the above R
code, do you expect the same value 19.24821 as the output? Please
briefly explain.

SOLUTION: Yes, as the LOOCV is not affected by randomly shuffling
the data.
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Now consider the following R output.

> set.seed(1)

> glm.fit = glm(mpg ~ poly(horsepower, 3), data=Auto)

> cv.glm(Auto, glm.fit, K=10)$delta[1]

[1] 19.14336

(d) (2 points) If we change set.seed(1) to set.seed(2) in the above R
code, do you expect the same value 19.14336 as the output? Please
briefly explain.

SOLUTION: No. A different seed leads to a different split of the data.
Hence the resulting 10-fold CV error would change.

(e) (2 points) Which of 19.14336 and 19.24821 do you expect to be closer
to the expected MSE of the model you write in part (a)?

SOLUTION: 19.24821 as the LOOCV yields more accurate estimate
of the expected MSE than 10-fold CV.
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Problem 5 (10 points)

(a) (3 points) Consider the ridge regression with tuning parameter λ. Draw
a picture which contains three curves (squared bias, variance, test MSE)
of the fitted model. Use the x-axis to indicate values of λ which start
from a large number and decrease until 0. The y-axis should represent
the values of squared bias, variance and test MSE of the fitted models.

In your picture, indicate which curves correspond to the squared bi-
as, variance and test MSE, respectively. (Pay attention to the trend
and relative magnitudes of the three metrics.) Also indicate the points
correspond to the OLS.
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(b) Consider the estimator which solves the following problem

min
β=(β1,β2)

n∑
i=1

(yi − β1xi1 − β2xi2)2, subject to |β1|+ |β2| ≤ s. (1)

(b1) (1 point) In general, can the solution of Eq. (1) give us a sparse
model?

SOLUTION: It can yield a sparse model provided that s is chosen
sufficiently small.

(b2) (2 points) Suppose the least squares estimate of (β1, β2) in this ex-

ample is (β̂LS1 , β̂LS2 ) = (−1, 1/2). Suppose we choose s = 2 in Eq.
(1). If the solution to Eq. (1) is unique for s = 2, does it contain
zeros? Please briefly explain your reasoning.

SOLUTION: Since the LS estimate (β̂LS1 , β̂LS2 ) lies in the feasible
region, i.e.,

|β̂LS1 |+ |β̂LS2 | ≤ 2,

the solution to (1), by definition, is (β̂LS1 , β̂LS2 ), which does not
contain 0.
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(c) Suppose we consider another estimator which solves the following pro-
blem

min
β=(β1,β2)

n∑
i=1

(yi − β1xi1 − β2xi2)2, subject to
√
β2
1 + β2

2 ≤ s. (2)

Consider the two predictors based on estimators computed from Eq.
(1) and Eq. (2), respectively.

(c1) (2 points) Suppose we choose the same s in Eq. (1) and Eq. (2). In
general, which predictor has smaller training MSE, the one corre-
sponding to Eq. (1) or that corresponding to Eq. (2)? (or there is
no sufficient information to tell). Please briefly explain the reason.

SOLUTION: Since the feasible region of (2) is larger than that of
(1), the training MSE of (2) is no greater than that of (1).
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(c2) (2 points) Assume the true model is

Y = α1X1 + ε.

Suppose you can choose the best s for both Eq. (1) and Eg. (2).
Do we expect the predictor in Eq. (1) to have smaller test MSE?

SOLUTION: Yes, as the coefficient of X2 is zero and Lasso tends
to perform better when the true model is sparse.
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Problem 6 (10 points, 1 point for each subquestion)

Be sure to mark your answers on the answer sheet of multiple choice questi-
ons. There can be one to four correct answers to each question. One point
is assigned to a multiple choice question if and only if all correct answers to
this question are checked and no incorrect answer to this question is checked.

1. Which of the following statements are true

A Finding the clusters of data is not a supervised learning problem.

B Both regression and classification problems belong to supervised lear-
ning problems.

C Linear regression is an example of parametric methods for estimating
the regression function.

D Ordinary Least Squares approach (OLS) can only be deployed under
linear models.

SOLUTION: ABC

2. Assume that the model Y = f(X) + ε holds, where ε is a random noise
with mean 0 and independent of X, then

A The regression function f(x) minimizes the training mean squared er-
ror (MSE) at X = x.

B The regression function f(x) minimizes the expected mean-squared
prediction error at X = x.

C The expected mean-squared prediction error of f(x) is Var(ε).

D None of the above statements is correct.

SOLUTION: BC
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3. Which of the following statements are true

A The nonparametric methods may have large variance.

B The parametric methods may have large bias.

C The parametric methods may have large expected MSE.

D The nonparametric methods may have large expected MSE.

SOLUTION: ABCD

4. Which of the following statements are true in a linear regression problem

A Collinearity between features may lead to a higher variance of the
prediction

B We can look at the residual plot to check the existence of collinearity.

C We can look at the residual plot to check the heteroscedasticity.

D We can look at the residuals to detect underfit.

SOLUTION: ACD

5. Qualitative predictors in regression

A Can be incorporated using dummy variables.

B Can be interpreted despite the model is nonlinear in them.

C Can not be incorporated since qualitative predictors lead to a classifi-
cation problem.

D None of the above statements is correct.

SOLUTION: AB
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6. Which of the following statements are true

A Forward selection starts from the model only including the intercept.

B Best subset selection always finds the best model.

C Backward selection compares fewer models than forward selection.

D Backward selection might find the best model.

SOLUTION: ABD

7. Which of the following statements are true

A BIC usually selects a model with fewer features than AIC.

B AIC and BIC can be used beyond linear models.

C AIC or BIC is more applicable than cross-validation for selecting dif-
ferent models.

D Cross-validation is always preferred over AIC or BIC.

SOLUTION: AB

8. Which of the following statements are true

A Lasso can yield a smaller training MSE than the OLS estimator.

B Lasso can possibly produce a sparse model.

C Ridge can produce a biased estimator.

D Ridge can have a smaller test MSE than Lasso when the true model is
sparse.

SOLUTION: BC
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9. Which of the following statements about local regression are true?

A A larger size of the neighborhood usually yields a fitted model with
larger variance.

B A larger size of the neighborhood usually yields a fitted model with
larger bias.

C A larger size of the neighborhood usually yields a fitted model with
smaller expected MSE.

D Local regression method suffers from curse of dimensionality.

SOLUTION: BD

10. Which of the following statements about generalized additive models (GAMs)
are true?

A GAMs do not suffer from the curse of dimensionality.

B GAMs cannot be used when we have more than one feature.

C It is possible to fit GAMs by the ordinary least squares approach.

D GAMs do not account for interaction of features.

SOLUTION: ACD
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