
STA314 Fall 2023 Homework 3

Homework 3 (Nov. 1st)

Deadline: Sunday, November 19th, at 11:59pm.

Submission: There are five questions in this homework. You need to submit separate PDF files
to each question via Crowdmark. For Questions 4 & 5, your submission should also contain the R
code and R outputs. You can produce the PDFs however you like (e.g. LATEX, Microsoft Word,
scanner), as long as they are legible.

Neatness Point: You will be deducted one point if we have a hard time reading your solutions
or understanding the structure of your code.

Late Submission: 10% of the total possible marks will be deducted for each day late, up to a
maximum of 3 days. After that, no submissions will be accepted.

• Problem 1 (4 pts)
It was mentioned in the lecture that a cubic regression spline with two knots at ξ1 < ξ2 can
be represented as

f(x) = β0 + β1x+ β2x
2 + β3x

3 + β4(x− ξ1)3+ + β5(x− ξ2)3+

where

(x− ξk)3+ =

{
(x− ξk)3 if x > ξk
0 otherwise

, ∀ k ∈ {1, 2}. (0.1)

We now verify f(x) is indeed a cubic regression spline by proving:

1. (1 pt) f(x) can be written as three cubic polynomials for x ≤ ξ1, ξ1 < x ≤ ξ2 and
x > ξ2.

2. (1 pt) the three polynomials have the same value at each knot.

3. (1 pt) the three polynomials have the same first order derivative at each knot.

4. (1 pt) the three polynomials have the same second order derivative at each knot.
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• Problem 2 (7 pts)
Consider the classification problem with the label of Y belong to C := {1, 2, . . . ,K} and any
realization x of X ∈ Rp. The Bayes classifier f∗ at X = x is defined as

f∗(x) := argmin
f(x)∈C

E
[
1{Y 6= f(x)} | X = x

]
.

In the class, we have shown that

f∗(x) = argmax
f(x)∈C

P(Y = f(x) | X = x).

1. (2 pts) Prove that
f∗(x) = argmax

k∈C
P(Y = k | X = x).

2. (1 pt) Prove that the Bayes error at X = x equals to

1−max
k∈C

P(Y = k | X = x).

3. (2 pts) Consider that K = 3. For a fixed x0, assume that

P(Y = 1 | X = x0) = 0.5

P(Y = 2 | X = x0) = 0.3

P(Y = 3 | X = x0) = 0.2.

State the Bayes classifier at X = x0 and compute its error at X = x0.

4. (2 pts) Consider a naive classifier f̂ , called random guessing, which randomly picks
one label from C = {1, 2, 3} with equal probability. Compute its expected error rate at
X = x0 and compare it with the Bayes error at X = x0 in part 3.
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• Problem 3 (7 pts)
We will prove that a random guessing classifier for binary classification has the area under the
curve (AUC) equal to 1/2. Suppose Y ∈ {0, 1} with Y = 1 meaning true, and false otherwise.
Consider the following random guessing classifier at any X = x

f̂(x) =

{
1, with prob. equal to p
0, with prob. equal to 1− p .

1. (3 pts) Prove that the expected AUC of f̂ is 1/2. [Hint: the expected False Positive
Rate is P(f̂(X) = 1 | Y = 0)]

2. (2 pts) Let η(x) := P(Y = 1 | X = x) for any x. Write the expected error rate of f̂ at
X = x in terms of η(x) and p.

3. (2 pts) If you have the flexibility of choosing p in your expression of part 2, which choice
minimizes the expected error rate of f̂ at X = x? Is the resulting classifier equivalent
to the Bayes classifier? State your explanation.
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• Problem 4 (14 pts)
This question uses the variables dis (the weighted mean of distances to five Boston employ-
ment centers) and nox (nitrogen oxides concentration in parts per 10 million) from the Boston
data in the library MASS. We will treat dis as the predictor and nox as the response. For
drawing the fitted lines below, let’s use the following code to generate a grid of dis

dislims<-range(Boston$dis)

dis.grid<-seq(from=dislims[1],to=dislims[2],length.out=100)

1. (2 pt) Use the poly() function to fit a polynomial regression with degree equal to 10 to
predict nox using dis. Plot the data, the polynomial fit and its 95% confidence band.
Comment on the width of the confidence band.

2. (2 pts) Plot the polynomial fits for a range of different polynomial degrees, from {1, 3,
5, 7, 10}, and report the associated residual sum of squares (RSS). What’s your finding
and how to explain it?

3. (2 pts) Perform 10-fold cross-validation to select the best degree of the polynomial from
{1, 3, 5, 7, 10}.

4. (2 pts) Use the bs() function to fit a regression spline with 7 degrees of freedom to
predict nox using dis. Specify how the knots are chosen and plot the resulting fit and
its 95% confidence band. Comment on the width of confidence band.

5. (2 pts) Use the ns() function to fit a natural regression spline with the same knots
specified in the previous part. (You may find the nox function and Boundary.knots

useful). Plot the resulting fit and its 95% confidence band. Comparing to the previous
plot, comment on the difference.

6. (2 pts) Now fit natural cubic splines for a range of degrees of freedom, from {5, 10,
15, 20} (specified via df in ns() function), and plot the resulting fits and report the
resulting RSS. Comment on what you observe.

7. (2 pts) Perform 10-fold cross-validation to select the best degrees of freedom for a
natural regression spline from {5, 10, 15, 20}.
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• Problem 5 (18 pts)
You will implement different local regression approaches in this problem. Let’s set the seed
to set.seed(20231101). For n = 300 training data, let’s generate (xi, yi) for 1 ≤ i ≤ n from

xi
i.i.d.∼ N(3, 1), εi

i.i.d.∼ N(0, 1),

yi = 0.5 + 0.1xi + 0.2x2i + εi.

Let’s generate another m = 300 test data points by the same generating mechanism. Set a
grid of the training data as x_grid=seq(0,6,by=0.02)

1. (5 pts) Implement the k-nearest-neighbor, that is, for any given x0, use the averaged
responses of its k nearest neighbors to predict, namely,

ŷ1(x0) =
1

k

∑
i∈Nk(x0)

yi

with Nk(x0) denoting the index set of k nearest neighbors of x0 among {x1, . . . , xn}.
Use your function to predict at each value of x_grid. Plot the training data points and
add on the lines of your fitted values for k ∈ {5, 20, 50, 100}. Make sure you label each
line correctly in your plot. Comment on your findings for different choices of k.

2. (5 pts) Repeat step 1 for the weighted k-nn, that is, for any given x0, predict by

ŷ2(x0) =
∑

i∈Nk(x0)

w(x0, xi)yi.

Here we choose the so-called tricubic weights as

w(x0, xi) =
w̃(x0, xi)∑

i∈Nk(x0)
w̃(x0, xi)

, ∀ i ∈ Nk(x0) (0.2)

with

w̃(x0, xi) =

(
1−

(
|xi − x0|

maxi∈Nk(x0) |xi − x0|

)3
)3

, (0.3)

3. (5 pts) Repeat step 1 for the weighted local linear regression, that is, for any given x0,

ŷ3(x0) = β̂0 + β̂1x0

with
(β̂0, β̂1) = argmin

β0,β1

∑
i∈Nk(x0)

w(x0, xi)(yi − β0 − β1xi)2.

Here w(x0, xi) is the same as in (0.2) – (0.3). For implementing the above weighted least
squares, you might use the lm function by specifying the weights argument.

4. (3 pts) Use the test data to choose the best one among the above three procedures for
k ∈ {5, 20, 50, 100}.
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