
Solution to Q2-Q4 in Homework 2

2023-10-3

Problem 2 (9 pts)

Part 1. (3 pts)

Generate the training data for ρ = 0.1 and n = 100.
# clear memory
rm(list=ls())

# you need MASS package to generate multivariate normal distribution
library(MASS)
set.seed(0)

# define a function of generating the data
data_Gen <- function(n, rho) {

mu <- rep(0, 3)
Sigma <- matrix(c(1, 0, 0, 0, 1, rho, 0, rho, 1), byrow = T, nrow = 3)
X <- mvrnorm(n, mu, Sigma)
epsilon <- rnorm(n, 0, 1)
beta <- c(0.5, 0.5, 0)
y <- X %*% beta + epsilon
return(list(y = y, X = X))

}

n_train <- 100
rho <- 0.1

train_data <- data_Gen(n_train, rho)
y_train <- train_data$y
X_train <- train_data$X

Fit each predictor and compute their training MSEs.
# fit predictors
lm_1 <- lm(y_train ~ X_train[,c(1,2)] - 1)
lm_2 <- lm(y_train ~ X_train[,c(1,2,3)] - 1)
lm_3 <- lm(y_train ~ X_train[,c(1,3)] - 1)

# compute training MSEs
cat("The training MSEs are: f1:", sum(lm_1$residuals ** 2) / n_train,

" f2:", sum(lm_2$residuals ** 2) / n_train,
" f3:", sum(lm_3$residuals ** 2) / n_train)

## The training MSEs are: f1: 0.8744107 f2: 0.8620776 f3: 1.223834
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We obtain the same conclusion between f̂1 and f̂2. For comparison between f̂1 and f̂3, we see that f̂1 has a
smaller training MSE. (Note the latter comparison could be different due to numerical randomness.)

Part 2. (3 pts)

Now repeat step (a) N = 100 times and compute the training MSEs.
N <- 100
# We use a N by 3 matrix to store the training of each predictor
train_MSEs <- matrix(0, N, 3)

for (i in 1:N) {
# generate the data
train_data <- data_Gen(n_train, rho)
y_train <- train_data$y
X_train <- train_data$X

lm_1 <- lm(y_train ~ X_train[,c(1,2)] - 1)
lm_2 <- lm(y_train ~ X_train[,c(1,2,3)] - 1)
lm_3 <- lm(y_train ~ X_train[,c(1,3)] - 1)

# compute and store the training MSEs
train_MSEs[i,] <- c(sum(lm_1$residuals ** 2) / n_train,

sum(lm_2$residuals ** 2) / n_train,
sum(lm_3$residuals ** 2) / n_train)

}

table(apply(train_MSEs, 1, which.min))

##
## 2
## 100
table(apply(train_MSEs, 1, which.max))

##
## 3
## 100
cat("The averaged training MSEs are",

paste(c("f1:,", "f2:", "f3:"), round(apply(train_MSEs, 2, mean), 3)))

## The averaged training MSEs are f1:, 0.994 f2: 0.982 f3: 1.233

We find that the comparison among three predictors stays the same across repetitions. The comparison
between f̂1 and f̂2 is as expected since the proof of MSE(f̂1) ≥ MSE(f̂2) holds for any training data. The
comparison between f̂1 and f̂3 is also expected as f̂1 uses the true features X1 and X2 whereas f̂3 uses X1
and X3. Since the correlation between X2 and X3 is small, we should expect a difference between them for
explaining the variances in the response. (Note the latter comparison could be different due to numerical
randomness.)

Part 3. (3 pts)

Let us re-do step (b) for ρ = 0.95.
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N <- 100
# We use a N by 3 matrix to store the training MSEs of each predictor
train_MSEs <- matrix(0, N, 3)

for (i in 1:N) {
# generate the data
train_data <- data_Gen(n_train, rho = 0.99)
y_train <- train_data$y
X_train <- train_data$X

lm_1 <- lm(y_train ~ X_train[,c(1,2)] - 1)
lm_2 <- lm(y_train ~ X_train[,c(1,2,3)] - 1)
lm_3 <- lm(y_train ~ X_train[,c(1,3)] - 1)

# compute and store the training MSEs
train_MSEs[i,] <- c(sum(lm_1$residuals ** 2) / n_train,

sum(lm_2$residuals ** 2) / n_train,
sum(lm_3$residuals ** 2) / n_train)

}

table(apply(train_MSEs, 1, which.min))

##
## 2
## 100
table(apply(train_MSEs, 1, which.max))

##
## 1 3
## 38 62
cat("The averaged training MSEs are",

paste(c("f1:,", "f2:", "f3:"), round(apply(train_MSEs, 2, mean), 3)))

## The averaged training MSEs are f1:, 0.974 f2: 0.961 f3: 0.979

We find the same conclusion between f̂1 and f̂2. Differently, we see that the comparison between MSE(f̂1)
and MSE(f̂3) varies per repetition. This is because X2 and X3 are very correlated, rendering the difference
between f̂1 and f̂2 small.
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Problem 3 (17 pts)

1. (2 pts)

Generate a data set with p = 20 features, n = 1000 observations, and an associated quantitative response
vector generated according to the model y = Xβ + ε, where β satisfies β1 = β2 = β3 = 2, β4 = β5 = 0.5 and
β6 = · · · = β20 = 0. The design matrix X ∈ Rn×p has entries generated as i.i.d. realizations of N(0, 1). The
error ε ∈ Rn also contains entries generated as i.i.d. realizations of N(0, 1). (Note: for reproducibility, you
need to specify \verb*|set.seed(0)| at the beginning before generating the data.)
# clear memory
rm(list=ls())

p = 20
n = 1000
beta = c(c(2,2,2,0.5,0.5), rep(0,15))
set.seed(0)
X = matrix(rnorm(n*p),nrow = n,ncol = p)
xi = rnorm(n)
y = X %*% beta + xi

2. (1 pt)

Randomly split your dataset into a training set containing 100 observations and a test set containing 900
observations.
set.seed(0)
indx = sample(1:n,100)
y.train = y[indx]
x.train = X[indx,]
y.test = y[-indx]
x.test = X[-indx,]

3. (2 pts)

Perform best subset selection on the training set, and plot the training set MSE associated with the best
model of each size.
library(leaps)
reg.fit = regsubsets(x = x.train,y = y.train,nvmax = 20)
reg.summary = summary(reg.fit)
plot(reg.summary$rss/length(y.train),xlab="Number of Variables",ylab="MSE",type="l")
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4. (2 pts)

Plot the test set MSE associated with the best model of each size.
x.test = cbind(rep(1,900),x.test)
colnames(x.test) = names(coef(reg.fit,id=20))

test.mse <- rep(NA,20)
for(i in 1:20){

coefi <- coef(reg.fit,id=i)
pred <- x.test[,names(coefi)]%*%coefi
test.mse[i] <- mean((y.test-pred)ˆ2)

}
plot(test.mse,xlab="Number of Variables",ylab="MSE",type="l")
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5. (2 pts)

For which model size do the training set MSE and test set MSE take on their minimum value? Comment on
your results.
opt.train = which.min(reg.summary$rss)
opt.test = which.min(test.mse)

The training MSE has the minimal value when the model size is 20, while the test MSE has the minimal
value when the model size is 5. The training error always decreases as the number of predictors increases.
Choosing the model based on the training MSE leads to overfitting. The selected model based on the test
MSE corresponds to the true model.

6. (2 pts)

How does the model at which the test set MSE is minimized compare to the true model used to generate the
data? Comment on the coefficient values
coef(reg.fit,id=opt.test)

## (Intercept) a b c d e
## -0.008975307 2.202528759 1.806976503 2.035352336 0.388887113 0.376186602

the model at which the test set MSE is minimized is

y = −0.009 + 2.20X1 + 1.81X2 + 2.04X3 + 0.39X4 + 0.38X5

while the true model is
y = 2X1 + 2X2 + 2X3 + 0.5X4 + 0.5X5

The model selected based on the test set MSE identifies the non-zero β. The coefficients between the
estimated model and the true model are close but different. It’s because that the estimated parameters in
linear regression are random, depending on the data.
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7. (2 pts)

Create a plot displaying √√√√ p∑
j=1

(βj − β̂(k)
j )2

for a range of values of k, where β̂(k)
j is the jth coefficient estimate for the best model containing k coefficients.

Comment on what you observe. How does this compare to the test MSE plot from part 4?
vals = rep(NA,20)
for(i in 1:20){

coefi <- coef(reg.fit,id=i)
betai = rep(0,21)
names(betai) = colnames(x.test)
betai[names(coefi)] = coefi
vals[i] = sqrt(sum((beta - betai[-1])ˆ2))

}
plot(vals,xlab="Number of Variables",ylab="l2 norm",type="l")

5 10 15 20

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of Variables

l2
 n

or
m

As the number of variables increases, the `2 norm of the estimation error first decreases, achieves its minimum
when the model size is 5, and then increases. It has the same trend as the test MSE plot.

8. (2 pts)

Repeat steps 3 - 6 for forward stepwise selection.
reg.fit.forward = regsubsets(x = x.train,y = y.train,nvmax = 20,method="forward")
reg.summary.forward = summary(reg.fit.forward)
plot(reg.summary.forward$rss/length(y.train),xlab="Number of Variables",ylab="MSE",type="l")
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test.mse <- rep(NA,20)
for(i in 1:20){

coefi <- coef(reg.fit.forward,id=i)
pred <- x.test[,names(coefi)]%*%coefi
test.mse[i] <- mean((y.test-pred)ˆ2)

}
plot(test.mse,xlab="Number of Variables",ylab="MSE",type="l")
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opt.train = which.min(reg.summary.forward$rss)
opt.test = which.min(test.mse)

8



We see the same result as the best subset selection. The training MSE has the minimal value when the model
size is 20, while the test MSE has the minimal value when the model size is 5.
coef(reg.fit.forward,id=opt.test)

## (Intercept) a b c d e
## -0.008975307 2.202528759 1.806976503 2.035352336 0.388887113 0.376186602

9. (2 pts)

Repeat steps 3 - 6 for backward stepwise selection. \end{enumerate}
reg.fit.backward = regsubsets(x = x.train,y = y.train,nvmax = 20,method="backward")
reg.summary.backward = summary(reg.fit.backward)
plot(reg.summary.backward$rss/length(y.train),xlab="Number of Variables",ylab="MSE",type="l")
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test.mse <- rep(NA,20)
for(i in 1:20){

coefi <- coef(reg.fit.backward,id=i)
pred <- x.test[,names(coefi)]%*%coefi
test.mse[i] <- mean((y.test-pred)ˆ2)

}

plot(test.mse,xlab="Number of Variables",ylab="MSE",type="l")
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opt.train = which.min(reg.summary.backward$rss)
opt.test = which.min(test.mse)

We see the same result as the best subset selection. The training MSE has the minimal value when the model
size is 20, while the test MSE has the minimal value when the model size is 5.
coef(reg.fit.backward,id=opt.test)

## (Intercept) a b c d e
## -0.008975307 2.202528759 1.806976503 2.035352336 0.388887113 0.376186602
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Problem 4 (12 pts)

Steps (a) – (d).
# clear memory
rm(list=ls())
# set global variable

n <- 1100
p <- 50

set.seed(0)

# generate X and epsilon

X <- matrix(rnorm(n*p), nrow=n, ncol=p, byrow=TRUE)

epsilon <- rnorm(n)

# generate beta and fit Y
beta <- c(rep(2,5), rep(0,45))

Y <- X%*%beta + epsilon

# Train/Test split
train_index <-sample(c(1:nrow(Y)),100)
train_y <- Y[train_index]
train_x <- X[train_index,]

test_y <- Y[-train_index]
test_x <- X[-train_index,]

# set grid of lambda

grid = 10ˆseq(10,-2,length = 100)

Part 1. (3 pts)

Fit both the ridge regression and the lasso with λ selected by cross validation on the grid generated as above.
Which method leads to a smaller test set MSE?
library(glmnet)

## Loading required package: Matrix

## Loaded glmnet 4.1-8
# ridge regression

cv.ridge <- cv.glmnet(train_x,train_y,alpha=0,lambda=grid)
bestlam <- cv.ridge$lambda.min
ridge.mod <- glmnet(train_x,train_y,alpha=0,lambda=bestlam)
pred.ridge <- predict(ridge.mod,test_x, lambda = bestlam)
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ridge.mse <- mean((test_y - pred.ridge)ˆ2)
paste('ridge regression MSE is ', ridge.mse)

## [1] "ridge regression MSE is 1.51215287321105"
# lasso regression
cv.lasso <- cv.glmnet(train_x,train_y,alpha=1,lambda=grid)
bestlam <- cv.lasso$lambda.min
lasso.mod <- glmnet(train_x,train_y,alpha=1,lambda=bestlam)
pred.lasso <- predict(lasso.mod,test_x, lambda = bestlam)

lasso.mse <- mean((test_y - pred.lasso)ˆ2)
paste('lasso regression MSE is ', lasso.mse)

## [1] "lasso regression MSE is 1.11141570184101"

We can see that the lasso gives a smaller test MSE here.

Part 2. (3 pts)

Repeat steps (a){(d) for generating the data by using different seeds

set.seed(2),...,set.seed(50)

and also repeat part 1 for each seed. Save the test error for both, lasso and ridge for all seeds. Together with
the results from part 1, this should give you 50 test MSEs for ridge and lasso.
# we can convert all above to be a function of seed numbers only:

mse_gen <- function(seed_num){
set.seed(seed_num)
X <- matrix(rnorm(n*p), nrow=n, ncol=p, byrow=TRUE)
epsilon <- rnorm(n)
beta <- c(rep(2,5), rep(0,45))
Y <- X%*%beta + epsilon

train_index <-sample(c(1:nrow(Y)),100)
train_y <- Y[train_index]
train_x <- X[train_index,]

test_y <- Y[-train_index]
test_x <- X[-train_index,]

grid = 10ˆseq(10,-2,length = 100)

#ridge regression
cv.ridge <- cv.glmnet(train_x,train_y,alpha=0,lambda=grid)
bestlam <- cv.ridge$lambda.min
ridge.mod <- glmnet(train_x,train_y,alpha=0,lambda=bestlam)
pred.ridge <- predict(ridge.mod,test_x, lambda = bestlam)

ridge.mse <- mean((test_y - pred.ridge)ˆ2)

# lasso regression
cv.lasso <- cv.glmnet(train_x,train_y,alpha=1,lambda=grid)
bestlam <- cv.lasso$lambda.min
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lasso.mod <- glmnet(train_x,train_y,alpha=1,lambda=bestlam)
pred.lasso <- predict(lasso.mod,test_x, lambda = bestlam)

lasso.mse <- mean((test_y - pred.lasso)ˆ2)

return(c(ridge.mse, lasso.mse))
}

# run for seed number 2 to 50

MSE_ridge <- c()
MSE_lasso <- c()

for (i in 2:50){
m <- mse_gen(i)
MSE_ridge <- c(MSE_ridge,m[1])
MSE_lasso <- c(MSE_lasso,m[2])

}

# concatenate with what we have from q1

MSE_ridge <- c(ridge.mse,MSE_ridge)
MSE_lasso <- c(lasso.mse,MSE_lasso)

# now make the box_plot

boxplot(MSE_ridge,MSE_lasso,
names = c('ridge','lasso'),
main = 'box plot of ridge and lasso mse',
y_lab = 'mse',
col="orange",
border="brown")
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• On average, the lasso has smaller test MSE than the ridge. The variance of test MSEs of the lasso is
also smaller than that of the ridge regression. In this case, the Lasso visibly outperforms the ridge.

• This is expected as the true model is sparse, that is, the true coefficients have zeroes.

Part 3. (6 pts)

Redo parts 1 and 2 by using βj = 0.5, for all j = 1, . . . , 50, in step (b).
# again redo the function:

mse_gen_new <- function(seed_num){
set.seed(seed_num)
X <- matrix(rnorm(n*p), nrow=n, ncol=p, byrow=TRUE)
epsilon <- rnorm(n)
beta <- rep(0.5,50)
Y <- X%*%beta + epsilon

train_index <-sample(c(1:nrow(Y)),100)
train_y <- Y[train_index]
train_x <- X[train_index,]

test_y <- Y[-train_index]
test_x <- X[-train_index,]

grid = 10ˆseq(10,-2,length = 100)

#ridge regression
cv.ridge <- cv.glmnet(train_x,train_y,alpha=0,lambda=grid)
bestlam <- cv.ridge$lambda.min
ridge.mod <- glmnet(train_x,train_y,alpha=0,lambda=bestlam)
pred.ridge <- predict(ridge.mod,test_x, lambda = bestlam)

ridge.mse <- mean((test_y - pred.ridge)ˆ2)

# lasso regression
cv.lasso <- cv.glmnet(train_x,train_y,alpha=1,lambda=grid)
bestlam <- cv.lasso$lambda.min
lasso.mod <- glmnet(train_x,train_y,alpha=1,lambda=bestlam)
pred.lasso <- predict(lasso.mod,test_x, lambda = bestlam)

lasso.mse <- mean((test_y - pred.lasso)ˆ2)

return(c(ridge.mse, lasso.mse))
}

#and fit the model:
#run for seed number 0 to 50

MSE_ridge_new <- c()
MSE_lasso_new <- c()

for (i in 0:50){
m <- mse_gen_new(i)
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MSE_ridge_new <- c(MSE_ridge_new,m[1])
MSE_lasso_new <- c(MSE_lasso_new,m[2])

}

# leave set.seed(1) out
MSE_ridge_new <- MSE_ridge_new[-2]
MSE_lasso_new <- MSE_lasso_new[-2]

# and now make the box_plot

boxplot(MSE_ridge_new,MSE_lasso_new,
names = c('ridge','lasso'),
main = 'box plot of ridge and lasso mse',
y_lab = 'mse',
col="orange",
border="brown")
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• The ridge regression, on average, has slightly smaller test MSEs than the Lasso. But their variances
of test MSEs are nearly the same. The advantage of the ridge over the lasso in this case seems not
substantial.

• This is also expected as the true coefficients have some small but non-zero entries, whence the ridge
should perform (slightly) better.
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