HW1 Q4 Solution

TA Team

10/7/2022
library(ISLR)

4(a) Fit a multiple regression model to predict Sales using Price, Urban, and US.

```
mod1 <- lm(data=Carseats, Sales ~ Price + Urban + US)
```

4(b) Provide an interpretation of each coefficient in the model. Be careful-some of the variables in the model are qualitative!

```
?Carseats ## gives us units of the variables
summary(mod1)
##
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9206 -1.6220 -0.0564 1.5786 7.0581
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.043469 0.651012 20.036 < 2e-16 ***
## Price -0.054459 0.005242 -10.389 < 2e-16 ***
## UrbanYes -0.021916 0.271650 -0.081 0.936
## USYes 1.200573 0.259042 4.635 4.86e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
## F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
```


Interpretation

1. Raising the price of carseats by 1 dollar is associated with 54.46 fewer car seats sold, with other variables held fixed.
2. A store being in an urban locations is associated with selling 21.92 fewer car seats than non-urban stores, with other variables held fixed.
3. A store being in the US is associated with selling 1200.57 more car seats than non-US stores, with other variables held fixed.

4(c) Write out the model in equation form, being careful to handle the qualitative variables properly.

$$
\text { Sales }_{i}=13.04-0.05 \times \text { Price }_{i}-0.02 \times \mathbb{I}\left[\mathrm{Urban}_{i}=\mathrm{Yes}\right]+1.20 \times \mathbb{I}\left[\mathrm{US}_{i}=\mathrm{Yes}\right]
$$

4(d) For which of the predictors can you reject the null hypothesis H0: Beta_j $=0$? Use the significance level 0.05 for the hypothesis test.

We can reject the hypothesis of $\beta_{j}=0$ at the 5% level for all β_{j} except for $\beta_{U r b a n}$.

4(e) On the basis of your response to question (d), fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.

```
mod2 <- lm(data=Carseats, Sales ~ Price + US)
```

4(f) What are the value of R2 for models in (a) and (e)? Does larger R2 mean the model fit the data better?

```
summary(mod1)$r.squared
## [1] 0.2392754
summary(mod2)$r.squared
## [1] 0.2392629
```

Model 1 has a larger R^{2} value.
No. R-squared measures the percent of variation in Y explained by variation in X, and it will always increase as we add more covariates into the model. A more appropriate criterion for model selection would be the adjusted R -squared which takes into account the model complexity.

4(g) Using the model from (e), construct the 95% confidence interval(s) for the coefficient(s).

```
confint(mod2)
## 2.5 % 97.5 %
## (Intercept) 11.79032020 14.27126531
## Price -0.06475984 -0.04419543
## USYes 0.69151957 1.70776632
```


4(h) Fit a linear regression model in (e) with interaction effect(s). Provide an interpretation of each coefficient in the model.

```
mod3 <- lm(data=Carseats, Sales ~ Price*US)
summary(mod3)
##
## Call:
## lm(formula = Sales ~ Price * US, data = Carseats)
##
## Residuals:
\#\# Min 1Q Median 3Q Max
## -6.9299 -1.6375 -0.0492 1.5765 7.0430
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.974798 0.953079 13.614 < 2e-16 ***
## Price -0.053986 0.008163 -6.613 1.22e-10 ***
## USYes 1.295775 1.252146 1.035 0.301
## Price:USYes -0.000835 0.010641 -0.078 0.937
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
## F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
```


Interpretation

On average:

1. Raising the price of carseats by 1 dollar is associated with 53.99 fewer car seats sold for a non-US store.
2. A store being in the US is associated with selling 1295.78 more car seats than non-US stores when the Price is zero.
3. For stores in US, raising the price of carseats by 1 dollar is associated with 0.84 fewer car seats sold comparing to the stores not in the US.
